From 20b9c584e7c43ecbb708459e531c24a1a4751e17 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Likelihood ratio test for mkinfit models
Lack-of-fit test for models fitted to data with replicates
loftest.Rd
This is a generic function with a method currently only defined for mkinfit
+objects. It fits an anova model to the data contained in the object and
+compares the likelihoods using the likelihood ratio test
+lrtest.default
from the lmtest package.
loftest(object, ...) + +# S3 method for mkinfit +loftest(object, ...)+ +
object | +A model object with a defined loftest method |
+
---|---|
... | +Not used |
+
The anova model is interpreted as the simplest form of an mkinfit model, +assuming only a constant variance about the means, but not enforcing any +structure of the means, so we have one model parameter for every mean +of replicate samples.
+lrtest
+# \dontrun{ +test_data <- subset(synthetic_data_for_UBA_2014[[12]]$data, name == "parent") +sfo_fit <- mkinfit("SFO", test_data, quiet = TRUE) +plot_res(sfo_fit) # We see a clear pattern in the residualsloftest(sfo_fit) # We have a clear lack of fit#> Likelihood ratio test +#> +#> Model 1: ANOVA with error model const +#> Model 2: SFO with error model const +#> #Df LogLik Df Chisq Pr(>Chisq) +#> 1 10 -40.710 +#> 2 3 -63.954 -7 46.487 7.027e-08 *** +#> --- +#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1# +# We try a different model (the one that was used to generate the data) +dfop_fit <- mkinfit("DFOP", test_data, quiet = TRUE) +plot_res(dfop_fit) # We don't see systematic deviations, but heteroscedastic residuals# therefore we should consider adapting the error model, although we have +loftest(dfop_fit) # no lack of fit#> Likelihood ratio test +#> +#> Model 1: ANOVA with error model const +#> Model 2: DFOP with error model const +#> #Df LogLik Df Chisq Pr(>Chisq) +#> 1 10 -40.710 +#> 2 5 -42.453 -5 3.485 0.6257# +# This is the anova model used internally for the comparison +test_data_anova <- test_data +test_data_anova$time <- as.factor(test_data_anova$time) +anova_fit <- lm(value ~ time, data = test_data_anova) +summary(anova_fit)#> +#> Call: +#> lm(formula = value ~ time, data = test_data_anova) +#> +#> Residuals: +#> Min 1Q Median 3Q Max +#> -6.1000 -0.5625 0.0000 0.5625 6.1000 +#> +#> Coefficients: +#> Estimate Std. Error t value Pr(>|t|) +#> (Intercept) 103.150 2.323 44.409 7.44e-12 *** +#> time1 -19.950 3.285 -6.073 0.000185 *** +#> time3 -50.800 3.285 -15.465 8.65e-08 *** +#> time7 -68.500 3.285 -20.854 6.28e-09 *** +#> time14 -79.750 3.285 -24.278 1.63e-09 *** +#> time28 -86.000 3.285 -26.181 8.35e-10 *** +#> time60 -94.900 3.285 -28.891 3.48e-10 *** +#> time90 -98.500 3.285 -29.986 2.49e-10 *** +#> time120 -100.450 3.285 -30.580 2.09e-10 *** +#> --- +#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 +#> +#> Residual standard error: 3.285 on 9 degrees of freedom +#> Multiple R-squared: 0.9953, Adjusted R-squared: 0.9912 +#> F-statistic: 240.5 on 8 and 9 DF, p-value: 1.417e-09 +#>#> 'log Lik.' -40.71015 (df=10)# +test_data_2 <- synthetic_data_for_UBA_2014[[12]]$data +m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"), + M1 = list(type = "SFO", to = "M2"), + M2 = list(type = "SFO"), use_of_ff = "max")#>sfo_lin_fit <- mkinfit(m_synth_SFO_lin, test_data_2, quiet = TRUE) +plot_res(sfo_lin_fit) # not a good model, we try parallel formationloftest(sfo_lin_fit)#> Likelihood ratio test +#> +#> Model 1: ANOVA with error model const +#> Model 2: m_synth_SFO_lin with error model const and fixed parameter(s) M1_0, M2_0 +#> #Df LogLik Df Chisq Pr(>Chisq) +#> 1 28 -93.606 +#> 2 7 -171.927 -21 156.64 < 2.2e-16 *** +#> --- +#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1# +m_synth_SFO_par <- mkinmod(parent = list(type = "SFO", to = c("M1", "M2")), + M1 = list(type = "SFO"), + M2 = list(type = "SFO"), use_of_ff = "max")#>sfo_par_fit <- mkinfit(m_synth_SFO_par, test_data_2, quiet = TRUE) +plot_res(sfo_par_fit) # much better for metabolitesloftest(sfo_par_fit)#> Likelihood ratio test +#> +#> Model 1: ANOVA with error model const +#> Model 2: m_synth_SFO_par with error model const and fixed parameter(s) M1_0, M2_0 +#> #Df LogLik Df Chisq Pr(>Chisq) +#> 1 28 -93.606 +#> 2 7 -156.331 -21 125.45 < 2.2e-16 *** +#> --- +#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1# +m_synth_DFOP_par <- mkinmod(parent = list(type = "DFOP", to = c("M1", "M2")), + M1 = list(type = "SFO"), + M2 = list(type = "SFO"), use_of_ff = "max")#>dfop_par_fit <- mkinfit(m_synth_DFOP_par, test_data_2, quiet = TRUE) +plot_res(dfop_par_fit) # No visual lack of fitloftest(dfop_par_fit) # no lack of fit found by the test#> Likelihood ratio test +#> +#> Model 1: ANOVA with error model const +#> Model 2: m_synth_DFOP_par with error model const and fixed parameter(s) M1_0, M2_0 +#> #Df LogLik Df Chisq Pr(>Chisq) +#> 1 28 -93.606 +#> 2 9 -102.763 -19 18.313 0.5016# +# The anova model used for comparison in the case of transformation products +test_data_anova_2 <- dfop_par_fit$data +test_data_anova_2$variable <- as.factor(test_data_anova_2$variable) +test_data_anova_2$time <- as.factor(test_data_anova_2$time) +anova_fit_2 <- lm(observed ~ time:variable - 1, data = test_data_anova_2) +summary(anova_fit_2)#> +#> Call: +#> lm(formula = observed ~ time:variable - 1, data = test_data_anova_2) +#> +#> Residuals: +#> Min 1Q Median 3Q Max +#> -6.1000 -0.5875 0.0000 0.5875 6.1000 +#> +#> Coefficients: (2 not defined because of singularities) +#> Estimate Std. Error t value Pr(>|t|) +#> time0:variableparent 103.150 1.573 65.562 < 2e-16 *** +#> time1:variableparent 83.200 1.573 52.882 < 2e-16 *** +#> time3:variableparent 52.350 1.573 33.274 < 2e-16 *** +#> time7:variableparent 34.650 1.573 22.024 < 2e-16 *** +#> time14:variableparent 23.400 1.573 14.873 6.35e-14 *** +#> time28:variableparent 17.150 1.573 10.901 5.47e-11 *** +#> time60:variableparent 8.250 1.573 5.244 1.99e-05 *** +#> time90:variableparent 4.650 1.573 2.956 0.006717 ** +#> time120:variableparent 2.700 1.573 1.716 0.098507 . +#> time0:variableM1 NA NA NA NA +#> time1:variableM1 11.850 1.573 7.532 6.93e-08 *** +#> time3:variableM1 22.700 1.573 14.428 1.26e-13 *** +#> time7:variableM1 33.050 1.573 21.007 < 2e-16 *** +#> time14:variableM1 31.250 1.573 19.863 < 2e-16 *** +#> time28:variableM1 18.900 1.573 12.013 7.02e-12 *** +#> time60:variableM1 7.550 1.573 4.799 6.28e-05 *** +#> time90:variableM1 3.850 1.573 2.447 0.021772 * +#> time120:variableM1 2.050 1.573 1.303 0.204454 +#> time0:variableM2 NA NA NA NA +#> time1:variableM2 6.700 1.573 4.259 0.000254 *** +#> time3:variableM2 16.750 1.573 10.646 8.93e-11 *** +#> time7:variableM2 25.800 1.573 16.399 6.89e-15 *** +#> time14:variableM2 28.600 1.573 18.178 6.35e-16 *** +#> time28:variableM2 25.400 1.573 16.144 9.85e-15 *** +#> time60:variableM2 21.600 1.573 13.729 3.81e-13 *** +#> time90:variableM2 17.800 1.573 11.314 2.51e-11 *** +#> time120:variableM2 14.100 1.573 8.962 2.79e-09 *** +#> --- +#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 +#> +#> Residual standard error: 2.225 on 25 degrees of freedom +#> Multiple R-squared: 0.9979, Adjusted R-squared: 0.9957 +#> F-statistic: 469.2 on 25 and 25 DF, p-value: < 2.2e-16 +#># } +
Likelihood ratio test for mkinfit models
# S3 method for mkinfit -lrtest(object, object_2 = NULL, ...)+lrtest(object, object_2 = NULL, ...) + +# S3 method for mmkin +lrtest(object, ...)
object | -An |
+ An |
||||
---|---|---|---|---|---|---|
object_2 | -- cgit v1.2.1 From c3700bec3a704660d3ade7a54c56b7084beb02b4 Mon Sep 17 00:00:00 2001 From: Johannes Ranke
object | +An mmkin column object, containing two or more
+ |
+
---|---|
... | +Not used in the method for mmkin column objects, +further mkinfit objects in the method for mkinfit objects. |
+
Burnham KP and Anderson DR (2004) Multimodel + Inference: Understanding AIC and BIC in Model Selection + Sociological Methods & Research 33(2) 261-304
+ ++# \dontrun{ +f_sfo <- mkinfit("SFO", FOCUS_2006_D, quiet = TRUE) +f_dfop <- mkinfit("DFOP", FOCUS_2006_D, quiet = TRUE) +aw_sfo_dfop <- aw(f_sfo, f_dfop) +sum(aw_sfo_dfop)#> [1] 1aw_sfo_dfop # SFO gets more weight as it has less parameters and a similar fit#> [1] 0.5970258 0.4029742f <- mmkin(c("SFO", "FOMC", "DFOP"), list("FOCUS D" = FOCUS_2006_D), cores = 1, quiet = TRUE) +aw(f)#> [1] 0.4808722 0.1945539 0.3245740#> [1] 1#> [1] 0.5970258 0.4029742# } +
Calculate Akaike weights for model averaging
An mmkin column object, containing two or more
-mkinfit
models that have been fitted to the same data,
+
An mmkin column object, containing two or more +mkinfit models that have been fitted to the same data, or an mkinfit object. In the latter case, further mkinfit objects fitted to the same data should be specified as dots arguments.
Not used in the method for mmkin column objects, -further mkinfit objects in the method for mkinfit objects.
Not used in the method for mmkin column objects, +further mkinfit objects in the method for mkinfit objects.
Burnham KP and Anderson DR (2004) Multimodel - Inference: Understanding AIC and BIC in Model Selection - Sociological Methods & Research 33(2) 261-304
+Inference: Understanding AIC and BIC in Model Selection. +Sociological Methods & Research 33(2) 261-304# \dontrun{ -- cgit v1.2.1 From 7ea467e0e0ba5bf51540b26e197869a58ed1a092 Mon Sep 17 00:00:00 2001 From: Johannes RankeDate: Mon, 9 Dec 2019 15:21:11 +0100 Subject: Consistently use "two-component error model" instead of "two component error model" --- docs/reference/index.html | 2 +- docs/reference/sigma_twocomp.html | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) (limited to 'docs/reference') diff --git a/docs/reference/index.html b/docs/reference/index.html index 3d417267..73dfbe4c 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -444,7 +444,7 @@ kinetic models fitted with mkinfit - + Two component error model
Two-component error model
sigma_twocomp.Rd
The relative height of the middle plot, if more than two rows of plots are shown. |
+ |
ymax | +Maximum y axis value for |
+
---|---|
... | Further arguments passed to |