From 3cddc58e6fcdd5341b354dc5b5f784ec8190f62b Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Mon, 14 Mar 2022 15:41:56 +0100
Subject: Reduce check time for CRAN, release
---
docs/reference/Rplot001.png | Bin 14083 -> 1011 bytes
docs/reference/Rplot002.png | Bin 13699 -> 57977 bytes
docs/reference/Rplot003.png | Bin 48687 -> 59128 bytes
docs/reference/create_deg_func.html | 10 +++++-----
docs/reference/nlme.mmkin.html | 9 ++++-----
docs/reference/summary.nlme.mmkin.html | 17 +++++++++++------
6 files changed, 20 insertions(+), 16 deletions(-)
(limited to 'docs/reference')
diff --git a/docs/reference/Rplot001.png b/docs/reference/Rplot001.png
index ca982688..17a35806 100644
Binary files a/docs/reference/Rplot001.png and b/docs/reference/Rplot001.png differ
diff --git a/docs/reference/Rplot002.png b/docs/reference/Rplot002.png
index de2d61aa..ddd3a0d7 100644
Binary files a/docs/reference/Rplot002.png and b/docs/reference/Rplot002.png differ
diff --git a/docs/reference/Rplot003.png b/docs/reference/Rplot003.png
index f8bf10bb..fa29fc43 100644
Binary files a/docs/reference/Rplot003.png and b/docs/reference/Rplot003.png differ
diff --git a/docs/reference/create_deg_func.html b/docs/reference/create_deg_func.html
index 57516fba..2516edff 100644
--- a/docs/reference/create_deg_func.html
+++ b/docs/reference/create_deg_func.html
@@ -111,8 +111,8 @@
#> Temporary DLL for differentials generated and loaded
FOCUS_D <- subset(FOCUS_2006_D, value != 0) # to avoid warnings
fit_1 <- mkinfit(SFO_SFO, FOCUS_D, solution_type = "analytical", quiet = TRUE)
-fit_2 <- mkinfit(SFO_SFO, FOCUS_D, solution_type = "deSolve", quiet = TRUE)
# \dontrun{
+fit_2 <- mkinfit(SFO_SFO, FOCUS_D, solution_type = "deSolve", quiet = TRUE)
if (require(rbenchmark))
benchmark(
analytical = mkinfit(SFO_SFO, FOCUS_D, solution_type = "analytical", quiet = TRUE),
@@ -120,8 +120,8 @@
replications = 2)
#> Loading required package: rbenchmark
#> test replications elapsed relative user.self sys.self user.child
-#> 1 analytical 2 0.406 1.000 0.407 0.000 0
-#> 2 deSolve 2 0.698 1.719 0.695 0.003 0
+#> 1 analytical 2 0.394 1.000 0.393 0 0
+#> 2 deSolve 2 0.678 1.721 0.677 0 0
#> sys.child
#> 1 0
#> 2 0
@@ -134,8 +134,8 @@
deSolve = mkinfit(DFOP_SFO, FOCUS_D, solution_type = "deSolve", quiet = TRUE),
replications = 2)
#> test replications elapsed relative user.self sys.self user.child
-#> 1 analytical 2 0.855 1.000 0.856 0 0
-#> 2 deSolve 2 1.588 1.857 1.587 0 0
+#> 1 analytical 2 0.829 1.000 0.829 0 0
+#> 2 deSolve 2 1.559 1.881 1.559 0 0
#> sys.child
#> 1 0
#> 2 0
diff --git a/docs/reference/nlme.mmkin.html b/docs/reference/nlme.mmkin.html
index 4b59afed..1f071ffa 100644
--- a/docs/reference/nlme.mmkin.html
+++ b/docs/reference/nlme.mmkin.html
@@ -97,7 +97,7 @@ have been obtained by fitting the same model to a list of datasets.
data = "auto",
fixed = lapply(as.list(names(mean_degparms(model))), function(el) eval(parse(text =
paste(el, 1, sep = "~")))),
- random = pdDiag(fixed),
+ random = pdDiag(fixed),
groups,
start = mean_degparms(model, random = TRUE, test_log_parms = TRUE),
correlation = NULL,
@@ -187,12 +187,11 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
Examples
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")], name == "parent"))
-f <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, cores = 1)
-library(nlme)
-f_nlme_sfo <- nlme(f["SFO", ])
# \dontrun{
-
+ f <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, cores = 1)
+ library(nlme)
+ f_nlme_sfo <- nlme(f["SFO", ])
f_nlme_dfop <- nlme(f["DFOP", ])
anova(f_nlme_sfo, f_nlme_dfop)
#> Model df AIC BIC logLik Test L.Ratio p-value
diff --git a/docs/reference/summary.nlme.mmkin.html b/docs/reference/summary.nlme.mmkin.html
index d2ed2a86..3f98bec7 100644
--- a/docs/reference/summary.nlme.mmkin.html
+++ b/docs/reference/summary.nlme.mmkin.html
@@ -96,7 +96,7 @@ endpoints such as formation fractions and DT50 values. Optionally
# S3 method for nlme.mmkin
-summary(
+summary(
object,
data = FALSE,
verbose = FALSE,
@@ -193,16 +193,20 @@ José Pinheiro and Douglas Bates for the components inherited from nlme
n = 1)[[1]]
})
+# \dontrun{
# Evaluate using mmkin and nlme
library(nlme)
f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1)
+#> Warning: Optimisation did not converge:
+#> iteration limit reached without convergence (10)
f_nlme <- nlme(f_mmkin)
-summary(f_nlme, data = TRUE)
+#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
+summary(f_nlme, data = TRUE)
#> nlme version used for fitting: 3.1.155
#> mkin version used for pre-fitting: 1.1.0
-#> R version used for fitting: 4.1.2
-#> Date of fit: Mon Mar 7 13:15:33 2022
-#> Date of summary: Mon Mar 7 13:15:33 2022
+#> R version used for fitting: 4.1.3
+#> Date of fit: Mon Mar 14 08:58:29 2022
+#> Date of summary: Mon Mar 14 08:58:29 2022
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
@@ -212,7 +216,7 @@ José Pinheiro and Douglas Bates for the components inherited from nlme
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 0.528 s using 4 iterations
+#> Fitted in 0.527 s using 4 iterations
#>
#> Variance model: Two-component variance function
#>
@@ -352,6 +356,7 @@ José Pinheiro and Douglas Bates for the components inherited from nlme
#> ds 5 parent 90 20.8 22.692 -1.89165 1.7926 -1.055273
#> ds 5 parent 120 13.4 13.768 -0.36790 1.0876 -0.338259
#> ds 5 parent 120 13.8 13.768 0.03210 1.0876 0.029517
+# }
--
cgit v1.2.1