From 808a679efb69ec6603db6642687d9e8ceb3b3453 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Thu, 14 May 2020 18:39:29 +0200
Subject: Add a parms method for mmkin objects
---
docs/reference/parms.html | 83 +++++++++++++++++++++++++++++++++++++++++++++--
1 file changed, 80 insertions(+), 3 deletions(-)
(limited to 'docs/reference')
diff --git a/docs/reference/parms.html b/docs/reference/parms.html
index f62b3898..cb705d2c 100644
--- a/docs/reference/parms.html
+++ b/docs/reference/parms.html
@@ -111,6 +111,9 @@ considering the error structure that was assumed for the fit." />
Example evaluation of NAFTA SOP Attachment examples
+
+ Some benchmark timings
+
@@ -151,6 +154,9 @@ considering the error structure that was assumed for the fit.
... |
@@ -173,7 +180,10 @@ as used internally during the optimisation?
Value
- A numeric vector of fitted model parameters
+ For mkinfit objects, a numeric vector of fitted model parameters.
+For mmkin row objects, a matrix with the parameters with a
+row for each dataset. If the mmkin object has more than one row, a list of
+such matrices is returned.
Examples
#> Ordinary least squares optimisation
#> Sum of squared residuals at call 1: 2388.077
@@ -190,7 +200,74 @@ as used internally during the optimisation?
#> Sum of squared residuals at call 25: 196.5334
#> Negative log-likelihood at call 31: 26.64668
#> Optimisation successfully terminated.
parms(fit)
#> parent_0 k_parent_sink sigma
#> 82.4921598 0.3060633 4.6730124
parms(fit, transformed = TRUE)
#> parent_0 log_k_parent_sink sigma
-#> 82.492160 -1.183963 4.673012
+#> 82.492160 -1.183963 4.673012 #> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
+#> k_parent_sink 0.05794659 0.009647805 0.2102974 0.1232258 0.00720421
+#> sigma 5.15274487 7.040168584 3.6769645 6.4669234 6.50457673
parms(fits[, 2])
#> $SFO
+#> Dataset 7
+#> parent_0 82.666781678
+#> k_parent_sink 0.009647805
+#> sigma 7.040168584
+#>
+#> $FOMC
+#> Dataset 7
+#> parent_0 92.6837649
+#> alpha 0.4967832
+#> beta 14.1451255
+#> sigma 1.9167519
+#>
+#> $DFOP
+#> Dataset 7
+#> parent_0 91.058971503
+#> k1 0.044946770
+#> k2 0.002868336
+#> g 0.526942415
+#> sigma 2.221302196
+#>
parms(fits)
#> $SFO
+#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
+#> k_parent_sink 0.05794659 0.009647805 0.2102974 0.1232258 0.00720421
+#> sigma 5.15274487 7.040168584 3.6769645 6.4669234 6.50457673
+#>
+#> $FOMC
+#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481458
+#> alpha 1.338667 0.4967832 1.639099 1.074460 0.2805272
+#> beta 13.033315 14.1451255 5.007077 4.397126 6.9052224
+#> sigma 1.847671 1.9167519 1.066063 3.146056 1.6222778
+#>
+#> $DFOP
+#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 96.55213663 91.058971503 90.34509469 98.14858850 94.311323409
+#> k1 0.21954589 0.044946770 0.41232289 0.31697588 0.080663853
+#> k2 0.02957934 0.002868336 0.07581767 0.03260384 0.003425417
+#> g 0.44845068 0.526942415 0.66091965 0.65322767 0.342652880
+#> sigma 1.35690468 2.221302196 1.34169076 2.87159846 1.942067831
+#>
parms(fits, transformed = TRUE)
#> $SFO
+#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 88.522754 82.666782 86.854731 91.777931 82.148094
+#> log_k_parent_sink -2.848234 -4.641025 -1.559232 -2.093737 -4.933090
+#> sigma 5.152745 7.040169 3.676964 6.466923 6.504577
+#>
+#> $FOMC
+#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 95.5585751 92.6837649 90.7197870 98.38393897 94.848146
+#> log_alpha 0.2916741 -0.6996015 0.4941466 0.07181816 -1.271085
+#> log_beta 2.5675088 2.6493701 1.6108523 1.48095106 1.932278
+#> sigma 1.8476712 1.9167519 1.0660627 3.14605557 1.622278
+#>
+#> $DFOP
+#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 96.5521366 91.05897150 90.3450947 98.1485885 94.311323
+#> log_k1 -1.5161940 -3.10227638 -0.8859485 -1.1489296 -2.517465
+#> log_k2 -3.5206791 -5.85402317 -2.5794240 -3.4233253 -5.676532
+#> g_ilr -0.1463234 0.07627854 0.4719196 0.4477805 -0.460676
+#> sigma 1.3569047 2.22130220 1.3416908 2.8715985 1.942068
+#>