From 92bd33824bde6b6b21bfc7e30953092a74d3cce5 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
t | +Time. |
+
---|---|
parent_0 | +Starting value for the response variable at time zero. |
+
k1 | +First kinetic constant. |
+
k2 | +Second kinetic constant. |
+
tb | Break point. Before this time, exponential decline according to
@@ -159,6 +175,21 @@ according to |
The value of the response variable at time t
.
FOCUS (2006) “Guidance Document on Estimating Persistence + and Degradation Kinetics from Environmental Fate Studies on Pesticides in + EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, + EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, + http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics +FOCUS (2014) “Generic guidance for Estimating Persistence + and Degradation Kinetics from Environmental Fate Studies on Pesticides in + EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, + Version 1.1, 18 December 2014 + http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
Other parent solutions: diff --git a/docs/reference/SFO.solution.html b/docs/reference/SFO.solution.html index 93da04eb..9664deb3 100644 --- a/docs/reference/SFO.solution.html +++ b/docs/reference/SFO.solution.html @@ -72,7 +72,7 @@
t | +Time. |
+ ||||
---|---|---|---|---|---|
parent_0 | +Starting value for the response variable at time zero. |
+ ||||
k_12 | Kinetic constant describing transfer from free to bound. |
@@ -176,6 +184,18 @@ fraction.
spec | +List of model specifications as contained in mkinmod objects |
+
---|---|
use_of_ff | +Minimum or maximum use of formation fractions |
+
Degradation function to be attached to mkinmod objects
+ ++#>#> Warning: Observations with value of zero were removed from the data
Logistic kinetics
R/logistic.solution.R
, R/parent_solutions.R
+ Source: R/parent_solutions.R
logistic.solution.Rd
Function describing exponential decline from a defined starting value, with -an increasing rate constant, supposedly caused by microbial growth
-Function describing exponential decline from a defined starting value, with an increasing rate constant, supposedly caused by microbial growth
logistic.solution(t, parent_0, kmax, k0, r) - -logistic.solution(t, parent_0, kmax, k0, r)+
logistic.solution(t, parent_0, kmax, k0, r)
r | Growth rate of the increase in the rate constant. |
-
---|---|
parent.0 | -Starting value for the response variable at time zero. |
-
The solution of the logistic model reduces to the
- SFO.solution
if k0
is equal to kmax
.
The solution of the logistic model reduces to the
SFO.solution
if k0
is equal to kmax
.
FOCUS (2014) “Generic guidance for Estimating Persistence +
FOCUS (2006) “Guidance Document on Estimating Persistence + and Degradation Kinetics from Environmental Fate Studies on Pesticides in + EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, + EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, + http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics +FOCUS (2014) “Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version 1.1, 18 December 2014 @@ -247,44 +240,6 @@ an increasing rate constant, supposedly caused by microbial growth
#> k0 0.4448749 #> r 1.1821120 #> sigma 7.3256566mkinmod( ..., - use_of_ff = "min", + use_of_ff = "max", speclist = NULL, quiet = FALSE, verbose = FALSE @@ -252,15 +252,15 @@ in the FOCUS and NAFTA guidance documents are used. SFO_SFO <- mkinmod( parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), verbose = TRUE)#> Compilation argument: -#> /usr/lib/R/bin/R CMD SHLIB file66a9718e919b.c 2> file66a9718e919b.c.err.txt +#> /usr/lib/R/bin/R CMD SHLIB fileb6a4eaab60.c 2> fileb6a4eaab60.c.err.txt #> Program source: #> 1: #include <R.h> #> 2: #> 3: #> 4: static double parms [3]; -#> 5: #define k_parent_sink parms[0] -#> 6: #define k_parent_m1 parms[1] -#> 7: #define k_m1_sink parms[2] +#> 5: #define k_parent parms[0] +#> 6: #define f_parent_to_m1 parms[1] +#> 7: #define k_m1 parms[2] #> 8: #> 9: void initpar(void (* odeparms)(int *, double *)) { #> 10: int N = 3; @@ -270,8 +270,8 @@ in the FOCUS and NAFTA guidance documents are used. #> 14: #> 15: void func ( int * n, double * t, double * y, double * f, double * rpar, int * ipar ) { #> 16: -#> 17: f[0] = - k_parent_sink * y[0] - k_parent_m1 * y[0]; -#> 18: f[1] = + k_parent_m1 * y[0] - k_m1_sink * y[1]; +#> 17: f[0] = - k_parent * y[0]; +#> 18: f[1] = + f_parent_to_m1 * k_parent * y[0] - k_m1 * y[1]; #> 19: }#># If we have several parallel metabolites # (compare tests/testthat/test_synthetic_data_for_UBA_2014.R) diff --git a/docs/reference/mkinpredict.html b/docs/reference/mkinpredict.html index 689fb7c7..21c13156 100644 --- a/docs/reference/mkinpredict.html +++ b/docs/reference/mkinpredict.html @@ -74,7 +74,7 @@ kinetic parameters and initial values for the state variables." />@@ -268,8 +268,29 @@ solver is used.SFO <- mkinmod(degradinol = mkinsub("SFO")) # Compare solution types -mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - solution_type = "analytical")#> Error in (function (t, parent_0, k) { parent = parent_0 * exp(-k * t)})(t = 0:20, parent.0 = c(degradinol = 100), k = 0.3): unbenutztes Argument (parent.0 = 100)mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, +mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, + solution_type = "analytical")#> time degradinol +#> 1 0 100.0000000 +#> 2 1 74.0818221 +#> 3 2 54.8811636 +#> 4 3 40.6569660 +#> 5 4 30.1194212 +#> 6 5 22.3130160 +#> 7 6 16.5298888 +#> 8 7 12.2456428 +#> 9 8 9.0717953 +#> 10 9 6.7205513 +#> 11 10 4.9787068 +#> 12 11 3.6883167 +#> 13 12 2.7323722 +#> 14 13 2.0241911 +#> 15 14 1.4995577 +#> 16 15 1.1108997 +#> 17 16 0.8229747 +#> 18 17 0.6096747 +#> 19 18 0.4516581 +#> 20 19 0.3345965 +#> 21 20 0.2478752#> time degradinol #> 1 0 100.0000000 #> 2 1 74.0818221 @@ -291,7 +312,7 @@ solver is used. #> 18 17 0.6096747 #> 19 18 0.4516581 #> 20 19 0.3345965 -#> 21 20 0.2478752mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, solution_type = "deSolve", use_compiled = FALSE)#> time degradinol #> 1 0 100.0000000 #> 2 1 74.0818221 @@ -313,7 +334,7 @@ solver is used. #> 18 17 0.6096747 #> 19 18 0.4516581 #> 20 19 0.3345965 -#> 21 20 0.2478752#> time degradinol #> 1 0 100.0000000 #> 2 1 74.0818221 @@ -337,25 +358,26 @@ solver is used. #> 20 19 0.3345965 #> 21 20 0.2478752# Compare integration methods to analytical solution -mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, - solution_type = "analytical")[21,]#> Error in (function (t, parent_0, k) { parent = parent_0 * exp(-k * t)})(t = 0:20, parent.0 = c(degradinol = 100), k = 0.3): unbenutztes Argument (parent.0 = 100)mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, +mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, + solution_type = "analytical")[21,]#> time degradinol +#> 21 20 0.2478752#> time degradinol -#> 21 20 0.2478752#> time degradinol -#> 21 20 0.2478752#> time degradinol #> 21 20 0.2480043# rk4 is not as precise here # The number of output times used to make a lot of difference until the # default for atol was adjusted -mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), +mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), seq(0, 20, by = 0.1))[201,]#> time degradinol -#> 201 20 0.2478752#> time degradinol #> 2001 20 0.2478752# Check compiled model versions - they are faster than the eigenvalue based solutions! SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"), - m1 = list(type = "SFO"))#>#>if(require(rbenchmark)) { benchmark( eigen = mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), @@ -371,7 +393,7 @@ solver is used. }#>#> test replications elapsed relative user.self sys.self user.child #> 3 deSolve 10 0.229 28.625 0.229 0 0 #> 2 deSolve_compiled 10 0.008 1.000 0.008 0 0 -#> 1 eigen 10 0.025 3.125 0.026 0 0 +#> 1 eigen 10 0.026 3.250 0.025 0 0 #> sys.child #> 3 0 #> 2 0 diff --git a/docs/reference/nlme-1.png b/docs/reference/nlme-1.png index 68ccb43f..8db1f999 100644 Binary files a/docs/reference/nlme-1.png and b/docs/reference/nlme-1.png differ diff --git a/docs/reference/nlme.html b/docs/reference/nlme.html index 70c6b63c..b92d2141 100644 --- a/docs/reference/nlme.html +++ b/docs/reference/nlme.html @@ -10,23 +10,27 @@ - + - + - + + + + + - - + + - + - - + + @@ -40,7 +44,6 @@ an mmkin row object. An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a list of datasets." /> - @@ -58,7 +61,7 @@ datasets." /> - +-- cgit v1.2.1@@ -131,7 +139,7 @@ datasets." />@@ -116,7 +119,12 @@ datasets." /> @@ -177,15 +185,15 @@ datasets.- @@ -260,7 +263,7 @@ datasets.sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) m_SFO <- mkinmod(parent = mkinsub("SFO")) d_SFO_1 <- mkinpredict(m_SFO, - c(k_parent_sink = 0.1), + c(k_parent = 0.1), c(parent = 98), sampling_times) d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") d_SFO_2 <- mkinpredict(m_SFO, - c(k_parent_sink = 0.05), + c(k_parent = 0.05), c(parent = 102), sampling_times) d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") d_SFO_3 <- mkinpredict(m_SFO, - c(k_parent_sink = 0.02), + c(k_parent = 0.02), c(parent = 103), sampling_times) d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") @@ -214,42 +222,37 @@ datasets. #> Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink) #> Data: grouped_data #> AIC BIC logLik -#> 298.2781 307.7372 -144.1391 +#> 252.7798 262.1358 -121.3899 #> #> Random effects: #> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1) #> Level: ds #> Structure: Diagonal -#> parent_0 log_k_parent_sink Residual -#> StdDev: 0.9374733 0.7098105 3.83543 +#> parent_0 log_k_parent_sink Residual +#> StdDev: 0.0006768135 0.6800777 2.489397 #> #> Fixed effects: parent_0 + log_k_parent_sink ~ 1 -#> Value Std.Error DF t-value p-value -#> parent_0 101.76838 1.1445444 45 88.91606 0 -#> log_k_parent_sink -3.05444 0.4195622 45 -7.28008 0 +#> Value Std.Error DF t-value p-value +#> parent_0 101.74884 0.6456014 44 157.60321 0 +#> log_k_parent_sink -3.05575 0.4015811 44 -7.60929 0 #> Correlation: #> prnt_0 -#> log_k_parent_sink 0.034 +#> log_k_parent_sink 0.026 #> #> Standardized Within-Group Residuals: #> Min Q1 Med Q3 Max -#> -2.6169360 -0.2185329 0.0574070 0.5720937 3.0459868 +#> -2.1317488 -0.6878121 0.0828385 0.8592270 2.9529864 #> -#> Number of Observations: 49 -#> Number of Groups: 3# augPred does not seem to work on fits with more than one state +#> Number of Observations: 48 +#> Number of Groups: 3# augPred does not seem to work on fits with more than one state # variable