From 9abab1e2d4385039b01ad3dc0d9c5966bbe94fee Mon Sep 17 00:00:00 2001
From: Johannes Ranke Last change 18 May 2023
-(rebuilt 2023-05-19)
+(rebuilt 2023-08-09)
Source: vignettes/FOCUS_L.rmd
FOCUS_L.rmd
## mkin version used for fitting: 1.2.4
-## R version used for fitting: 4.3.0
-## Date of fit: Fri May 19 09:20:25 2023
-## Date of summary: Fri May 19 09:20:25 2023
+summary(m.L1.SFO)
+## mkin version used for fitting: 1.2.5
+## R version used for fitting: 4.3.1
+## Date of fit: Wed Aug 9 17:55:39 2023
+## Date of summary: Wed Aug 9 17:55:39 2023
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 133 model solutions performed in 0.011 s
+## Fitted using 133 model solutions performed in 0.031 s
##
## Error model: Constant variance
##
@@ -256,7 +256,7 @@ report.
A plot of the fit is obtained with the plot function for mkinfit
objects.
-plot(m.L1.SFO, show_errmin = TRUE, main = "FOCUS L1 - SFO")
+plot(m.L1.SFO, show_errmin = TRUE, main = "FOCUS L1 - SFO")
The residual plot can be easily obtained by
@@ -268,25 +268,25 @@ objects.## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge: ## false convergence (8)
+-plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")
plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")
-summary(m.L1.FOMC, data = FALSE)
summary(m.L1.FOMC, data = FALSE)
## Warning in sqrt(diag(covar)): NaNs produced
## Warning in sqrt(1/diag(V)): NaNs produced
## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result
## is doubtful
-## mkin version used for fitting: 1.2.4
-## R version used for fitting: 4.3.0
-## Date of fit: Fri May 19 09:20:25 2023
-## Date of summary: Fri May 19 09:20:25 2023
+## mkin version used for fitting: 1.2.5
+## R version used for fitting: 4.3.1
+## Date of fit: Wed Aug 9 17:55:39 2023
+## Date of summary: Wed Aug 9 17:55:39 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 342 model solutions performed in 0.021 s
+## Fitted using 342 model solutions performed in 0.07 s
##
## Error model: Constant variance
##
@@ -398,7 +398,7 @@ residual plot can be obtained simply by adding the argument
show_residuals
to the plot command.
m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE)
-plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
+plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
main = "FOCUS L2 - SFO")
The \(\chi^2\) error level of 14%
@@ -422,22 +422,22 @@ kinetics.
For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level is checked.
m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE)
-plot(m.L2.FOMC, show_residuals = TRUE,
+plot(m.L2.FOMC, show_residuals = TRUE,
main = "FOCUS L2 - FOMC")
-summary(m.L2.FOMC, data = FALSE)
-## mkin version used for fitting: 1.2.4
-## R version used for fitting: 4.3.0
-## Date of fit: Fri May 19 09:20:25 2023
-## Date of summary: Fri May 19 09:20:25 2023
+summary(m.L2.FOMC, data = FALSE)
+## mkin version used for fitting: 1.2.5
+## R version used for fitting: 4.3.1
+## Date of fit: Wed Aug 9 17:55:40 2023
+## Date of summary: Wed Aug 9 17:55:40 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.013 s
+## Fitted using 239 model solutions performed in 0.044 s
##
## Error model: Constant variance
##
@@ -506,15 +506,15 @@ the data.
Fitting the four parameter DFOP model further reduces the \(\chi^2\) error level.
m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE)
-plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
+plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = "FOCUS L2 - DFOP")
-summary(m.L2.DFOP, data = FALSE)
-## mkin version used for fitting: 1.2.4
-## R version used for fitting: 4.3.0
-## Date of fit: Fri May 19 09:20:25 2023
-## Date of summary: Fri May 19 09:20:25 2023
+summary(m.L2.DFOP, data = FALSE)
+## mkin version used for fitting: 1.2.5
+## R version used for fitting: 4.3.1
+## Date of fit: Wed Aug 9 17:55:40 2023
+## Date of summary: Wed Aug 9 17:55:40 2023
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -523,7 +523,7 @@ the data.
##
## Model predictions using solution type analytical
##
-## Fitted using 581 model solutions performed in 0.038 s
+## Fitted using 581 model solutions performed in 0.119 s
##
## Error model: Constant variance
##
@@ -611,7 +611,7 @@ only the L3 dataset prepared above.
# Only use one core here, not to offend the CRAN checks
mm.L3 <- mmkin(c("SFO", "FOMC", "DFOP"), cores = 1,
list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE)
-plot(mm.L3)
+plot(mm.L3)
The \(\chi^2\) error level of 21% as
well as the plot suggest that the SFO model does not fit very well. The
@@ -627,11 +627,11 @@ as a row index and datasets as a column index.
using square brackets for indexing which will result in the use of the
summary and plot functions working on mkinfit objects.
-summary(mm.L3[["DFOP", 1]])
-## mkin version used for fitting: 1.2.4
-## R version used for fitting: 4.3.0
-## Date of fit: Fri May 19 09:20:26 2023
-## Date of summary: Fri May 19 09:20:26 2023
+summary(mm.L3[["DFOP", 1]])
+## mkin version used for fitting: 1.2.5
+## R version used for fitting: 4.3.1
+## Date of fit: Wed Aug 9 17:55:41 2023
+## Date of summary: Wed Aug 9 17:55:41 2023
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -640,7 +640,7 @@ summary and plot functions working on mkinfit objects.
##
## Model predictions using solution type analytical
##
-## Fitted using 376 model solutions performed in 0.021 s
+## Fitted using 376 model solutions performed in 0.075 s
##
## Error model: Constant variance
##
@@ -715,7 +715,7 @@ summary and plot functions working on mkinfit objects.
## 91 parent 15.0 15.18 -0.18181
## 120 parent 12.0 10.19 1.81395
-plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)
+plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)
Here, a look to the model plot, the confidence intervals of the
parameters and the correlation matrix suggest that the parameter
@@ -746,7 +746,7 @@ below:
mm.L4 <- mmkin(c("SFO", "FOMC"), cores = 1,
list("FOCUS L4" = FOCUS_2006_L4_mkin),
quiet = TRUE)
-plot(mm.L4)
+plot(mm.L4)
The \(\chi^2\) error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error @@ -754,18 +754,18 @@ level at which the \(\chi^2\) test passes is slightly lower for the FOMC model. However, the difference appears negligible.
-summary(mm.L4[["SFO", 1]], data = FALSE)
## mkin version used for fitting: 1.2.4
-## R version used for fitting: 4.3.0
-## Date of fit: Fri May 19 09:20:26 2023
-## Date of summary: Fri May 19 09:20:26 2023
+summary(mm.L4[["SFO", 1]], data = FALSE)
+## mkin version used for fitting: 1.2.5
+## R version used for fitting: 4.3.1
+## Date of fit: Wed Aug 9 17:55:42 2023
+## Date of summary: Wed Aug 9 17:55:42 2023
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 142 model solutions performed in 0.008 s
+## Fitted using 142 model solutions performed in 0.027 s
##
## Error model: Constant variance
##
@@ -819,18 +819,18 @@ appears negligible.
## DT50 DT90
## parent 106 352
-summary(mm.L4[["FOMC", 1]], data = FALSE)
## mkin version used for fitting: 1.2.4
-## R version used for fitting: 4.3.0
-## Date of fit: Fri May 19 09:20:26 2023
-## Date of summary: Fri May 19 09:20:26 2023
+summary(mm.L4[["FOMC", 1]], data = FALSE)
+## mkin version used for fitting: 1.2.5
+## R version used for fitting: 4.3.1
+## Date of fit: Wed Aug 9 17:55:42 2023
+## Date of summary: Wed Aug 9 17:55:42 2023
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.012 s
+## Fitted using 224 model solutions performed in 0.04 s
##
## Error model: Constant variance
##
diff --git a/docs/articles/index.html b/docs/articles/index.html
index 7060b377..ac6236f1 100644
--- a/docs/articles/index.html
+++ b/docs/articles/index.html
@@ -17,7 +17,7 @@
@@ -119,6 +119,8 @@
Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P
+ Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione
+
Calculation of time weighted average concentrations with mkin
Example evaluation of FOCUS dataset Z
diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html
index 6213916b..3bd0d4d3 100644
--- a/docs/articles/mkin.html
+++ b/docs/articles/mkin.html
@@ -33,7 +33,7 @@
@@ -134,7 +134,7 @@
Ranke
Last change 18 May 2023
-(rebuilt 2023-05-19)
+(rebuilt 2023-08-09)
Source: vignettes/mkin.rmd
mkin.rmd
diff --git a/docs/articles/prebuilt/2023_mesotrione_parent.html b/docs/articles/prebuilt/2023_mesotrione_parent.html
new file mode 100644
index 00000000..b233fc3c
--- /dev/null
+++ b/docs/articles/prebuilt/2023_mesotrione_parent.html
@@ -0,0 +1,2560 @@
+
+
+
+
+
+
+
+Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione • mkin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Testing covariate modelling in hierarchical
+parent degradation kinetics with residue data on mesotrione
+ Johannes
+Ranke
+
+ Last change on 4 August 2023,
+last compiled on 9 August 2023
+
+ Source: vignettes/prebuilt/2023_mesotrione_parent.rmd
+ 2023_mesotrione_parent.rmd
+
+
+
+
+
+
+Introduction
+
+The purpose of this document is to test demonstrate how nonlinear
+hierarchical models (NLHM) based on the parent degradation models SFO,
+FOMC, DFOP and HS can be fitted with the mkin package, also considering
+the influence of covariates like soil pH on different degradation
+parameters. Because in some other case studies, the SFORB
+parameterisation of biexponential decline has shown some advantages over
+the DFOP parameterisation, SFORB was included in the list of tested
+models as well.
+The mkin package is used in version 1.2.5, which is contains the
+functions that were used for the evaluations. The saemix
+package is used as a backend for fitting the NLHM, but is also loaded to
+make the convergence plot function available.
+This document is processed with the knitr
package, which
+also provides the kable
function that is used to improve
+the display of tabular data in R markdown documents. For parallel
+processing, the parallel
package is used.
+
+library(mkin)
+library(knitr)
+library(saemix)
+library(parallel)
+n_cores <- detectCores()
+if (Sys.info()["sysname"] == "Windows") {
+ cl <- makePSOCKcluster(n_cores)
+} else {
+ cl <- makeForkCluster(n_cores)
+}
+
+Test data
+
+
+data_file <- system.file(
+ "testdata", "mesotrione_soil_efsa_2016.xlsx", package = "mkin")
+meso_ds <- read_spreadsheet(data_file, parent_only = TRUE)
+The following tables show the covariate data and the 18 datasets that
+were read in from the spreadsheet file.
+
+
+Covariate data
+
+
+pH
+
+
+
+Richmond
+6.2
+
+
+Richmond 2
+6.2
+
+
+ERTC
+6.4
+
+
+Toulouse
+7.7
+
+
+Picket Piece
+7.1
+
+
+721
+5.6
+
+
+722
+5.7
+
+
+723
+5.4
+
+
+724
+4.8
+
+
+725
+5.8
+
+
+727
+5.1
+
+
+728
+5.9
+
+
+729
+5.6
+
+
+730
+5.3
+
+
+731
+6.1
+
+
+732
+5.0
+
+
+741
+5.7
+
+
+742
+7.2
+
+
+
+
+for (ds_name in names(meso_ds)) {
+ print(
+ kable(mkin_long_to_wide(meso_ds[[ds_name]]),
+ caption = paste("Dataset", ds_name),
+ booktabs = TRUE, row.names = FALSE))
+}
+
+Dataset Richmond
+
+time
+meso
+
+
+
+0.000000
+91.00
+
+
+1.179050
+86.70
+
+
+3.537149
+73.60
+
+
+7.074299
+61.50
+
+
+10.611448
+55.70
+
+
+15.327647
+47.70
+
+
+17.685747
+39.50
+
+
+24.760046
+29.80
+
+
+35.371494
+19.60
+
+
+68.384889
+5.67
+
+
+0.000000
+97.90
+
+
+1.179050
+96.40
+
+
+3.537149
+89.10
+
+
+7.074299
+74.40
+
+
+10.611448
+57.40
+
+
+15.327647
+46.30
+
+
+18.864797
+35.50
+
+
+27.118146
+27.20
+
+
+35.371494
+19.10
+
+
+74.280138
+6.50
+
+
+108.472582
+3.40
+
+
+142.665027
+2.20
+
+
+
+
+Dataset Richmond 2
+
+time
+meso
+
+
+
+0.000000
+96.0
+
+
+2.422004
+82.4
+
+
+5.651343
+71.2
+
+
+8.073348
+53.1
+
+
+11.302687
+48.5
+
+
+16.954030
+33.4
+
+
+22.605373
+24.2
+
+
+45.210746
+11.9
+
+
+
+
+Dataset ERTC
+
+time
+meso
+
+
+
+0.000000
+99.9
+
+
+2.755193
+80.0
+
+
+6.428782
+42.1
+
+
+9.183975
+50.1
+
+
+12.857565
+28.4
+
+
+19.286347
+39.8
+
+
+25.715130
+29.9
+
+
+51.430259
+2.5
+
+
+
+
+Dataset Toulouse
+
+time
+meso
+
+
+
+0.000000
+96.8
+
+
+2.897983
+63.3
+
+
+6.761960
+22.3
+
+
+9.659942
+16.6
+
+
+13.523919
+16.1
+
+
+20.285879
+17.2
+
+
+27.047838
+1.8
+
+
+
+
+Dataset Picket Piece
+
+time
+meso
+
+
+
+0.000000
+102.0
+
+
+2.841195
+73.7
+
+
+6.629454
+35.5
+
+
+9.470649
+31.8
+
+
+13.258909
+18.0
+
+
+19.888364
+3.7
+
+
+
+
+Dataset 721
+
+time
+meso
+
+
+
+0.00000
+86.4
+
+
+11.24366
+61.4
+
+
+22.48733
+49.8
+
+
+33.73099
+41.0
+
+
+44.97466
+35.1
+
+
+
+
+Dataset 722
+
+time
+meso
+
+
+
+0.00000
+90.3
+
+
+11.24366
+52.1
+
+
+22.48733
+37.4
+
+
+33.73099
+21.2
+
+
+44.97466
+14.3
+
+
+
+
+Dataset 723
+
+time
+meso
+
+
+
+0.00000
+89.3
+
+
+11.24366
+70.8
+
+
+22.48733
+51.1
+
+
+33.73099
+42.7
+
+
+44.97466
+26.7
+
+
+
+
+Dataset 724
+
+time
+meso
+
+
+
+0.000000
+89.4
+
+
+9.008208
+65.2
+
+
+18.016415
+55.8
+
+
+27.024623
+46.0
+
+
+36.032831
+41.7
+
+
+
+
+Dataset 725
+
+time
+meso
+
+
+
+0.00000
+89.0
+
+
+10.99058
+35.4
+
+
+21.98116
+18.6
+
+
+32.97174
+11.6
+
+
+43.96232
+7.6
+
+
+
+
+Dataset 727
+
+time
+meso
+
+
+
+0.00000
+91.3
+
+
+10.96104
+63.2
+
+
+21.92209
+51.1
+
+
+32.88313
+42.0
+
+
+43.84417
+40.8
+
+
+
+
+Dataset 728
+
+time
+meso
+
+
+
+0.00000
+91.8
+
+
+11.24366
+43.6
+
+
+22.48733
+22.0
+
+
+33.73099
+15.9
+
+
+44.97466
+8.8
+
+
+
+
+Dataset 729
+
+time
+meso
+
+
+
+0.00000
+91.6
+
+
+11.24366
+60.5
+
+
+22.48733
+43.5
+
+
+33.73099
+28.4
+
+
+44.97466
+20.5
+
+
+
+
+Dataset 730
+
+time
+meso
+
+
+
+0.00000
+92.7
+
+
+11.07446
+58.9
+
+
+22.14893
+44.0
+
+
+33.22339
+46.0
+
+
+44.29785
+29.3
+
+
+
+
+Dataset 731
+
+time
+meso
+
+
+
+0.00000
+92.1
+
+
+11.24366
+64.4
+
+
+22.48733
+45.3
+
+
+33.73099
+33.6
+
+
+44.97466
+23.5
+
+
+
+
+Dataset 732
+
+time
+meso
+
+
+
+0.00000
+90.3
+
+
+11.24366
+58.2
+
+
+22.48733
+40.1
+
+
+33.73099
+33.1
+
+
+44.97466
+25.8
+
+
+
+
+Dataset 741
+
+time
+meso
+
+
+
+0.00000
+90.3
+
+
+10.84712
+68.7
+
+
+21.69424
+58.0
+
+
+32.54136
+52.2
+
+
+43.38848
+48.0
+
+
+
+
+Dataset 742
+
+time
+meso
+
+
+
+0.00000
+92.0
+
+
+11.24366
+60.9
+
+
+22.48733
+36.2
+
+
+33.73099
+18.3
+
+
+44.97466
+8.7
+
+
+
+
+
+
+Separate evaluations
+
+In order to obtain suitable starting parameters for the NLHM fits,
+separate fits of the five models to the data for each soil are generated
+using the mmkin
function from the mkin package. In a first
+step, constant variance is assumed. Convergence is checked with the
+status
function.
+
+deg_mods <- c("SFO", "FOMC", "DFOP", "SFORB", "HS")
+f_sep_const <- mmkin(
+ deg_mods,
+ meso_ds,
+ error_model = "const",
+ cluster = cl,
+ quiet = TRUE)
+
+
+
+
+Richmond
+Richmond 2
+ERTC
+Toulouse
+Picket Piece
+
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+C
+
+
+DFOP
+OK
+OK
+OK
+OK
+OK
+
+
+SFORB
+OK
+OK
+OK
+OK
+OK
+
+
+HS
+OK
+OK
+C
+OK
+OK
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+721
+722
+723
+724
+725
+727
+728
+729
+730
+731
+732
+741
+742
+
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+C
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+DFOP
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+SFORB
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+C
+OK
+OK
+OK
+OK
+OK
+
+
+HS
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+
+In the tables above, OK indicates convergence and C indicates failure
+to converge. Most separate fits with constant variance converged, with
+the exception of two FOMC fits, one SFORB fit and one HS fit.
+
+f_sep_tc <- update(f_sep_const, error_model = "tc")
+
+
+
+
+Richmond
+Richmond 2
+ERTC
+Toulouse
+Picket Piece
+
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+OK
+
+
+DFOP
+C
+OK
+OK
+OK
+OK
+
+
+SFORB
+OK
+OK
+OK
+OK
+OK
+
+
+HS
+OK
+OK
+C
+OK
+OK
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+721
+722
+723
+724
+725
+727
+728
+729
+730
+731
+732
+741
+742
+
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+C
+OK
+C
+C
+OK
+C
+OK
+C
+OK
+C
+OK
+
+
+DFOP
+C
+OK
+OK
+OK
+C
+OK
+OK
+OK
+OK
+C
+OK
+C
+OK
+
+
+SFORB
+C
+OK
+OK
+OK
+C
+OK
+OK
+C
+OK
+OK
+OK
+C
+OK
+
+
+HS
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+OK
+C
+OK
+OK
+OK
+
+
+
+With the two-component error model, the set of fits that did not
+converge is larger, with convergence problems appearing for a number of
+non-SFO fits.
+
+
+Hierarchical model fits without covariate effect
+
+The following code fits hierarchical kinetic models for the ten
+combinations of the five different degradation models with the two
+different error models in parallel.
+
+
+
+
+const
+tc
+
+
+
+SFO
+OK
+OK
+
+
+FOMC
+OK
+OK
+
+
+DFOP
+OK
+OK
+
+
+SFORB
+OK
+OK
+
+
+HS
+OK
+OK
+
+
+
+All fits terminate without errors (status OK).
+
+
+
+
+npar
+AIC
+BIC
+Lik
+
+
+
+SFO const
+5
+800.0
+804.5
+-395.0
+
+
+SFO tc
+6
+801.9
+807.2
+-394.9
+
+
+FOMC const
+7
+787.4
+793.6
+-386.7
+
+
+FOMC tc
+8
+788.9
+796.1
+-386.5
+
+
+DFOP const
+9
+787.6
+795.6
+-384.8
+
+
+SFORB const
+9
+787.4
+795.4
+-384.7
+
+
+HS const
+9
+781.9
+789.9
+-382.0
+
+
+DFOP tc
+10
+787.4
+796.3
+-383.7
+
+
+SFORB tc
+10
+795.8
+804.7
+-387.9
+
+
+HS tc
+10
+783.7
+792.7
+-381.9
+
+
+
+The model comparisons show that the fits with constant variance are
+consistently preferable to the corresponding fits with two-component
+error for these data. This is confirmed by the fact that the parameter
+b.1
(the relative standard deviation in the fits obtained
+with the saemix package), is ill-defined in all fits.
+
+
+
+
+
+
+
+
+
+const
+tc
+
+
+
+SFO
+sd(meso_0)
+sd(meso_0), b.1
+
+
+FOMC
+sd(meso_0), sd(log_beta)
+sd(meso_0), sd(log_beta), b.1
+
+
+DFOP
+sd(meso_0), sd(log_k1)
+sd(meso_0), sd(g_qlogis), b.1
+
+
+SFORB
+sd(meso_free_0), sd(log_k_meso_free_bound)
+sd(meso_free_0), sd(log_k_meso_free_bound), b.1
+
+
+HS
+sd(meso_0)
+sd(meso_0), b.1
+
+
+
+For obtaining fits with only well-defined random effects, we update
+the set of fits, excluding random effects that were ill-defined
+according to the illparms
function.
+
+
+
+
+const
+tc
+
+
+
+SFO
+OK
+OK
+
+
+FOMC
+OK
+OK
+
+
+DFOP
+OK
+OK
+
+
+SFORB
+OK
+OK
+
+
+HS
+OK
+OK
+
+
+
+The updated fits terminate without errors.
+
+
+
+
+const
+tc
+
+
+
+SFO
+
+b.1
+
+
+FOMC
+
+b.1
+
+
+DFOP
+
+b.1
+
+
+SFORB
+
+b.1
+
+
+HS
+
+
+
+
+
+No ill-defined errors remain in the fits with constant variance.
+
+
+Hierarchical model fits with covariate effect
+
+In the following sections, hierarchical fits including a model for
+the influence of pH on selected degradation parameters are shown for all
+parent models. Constant variance is selected as the error model based on
+the fits without covariate effects. Random effects that were ill-defined
+in the fits without pH influence are excluded. A potential influence of
+the soil pH is only included for parameters with a well-defined random
+effect, because experience has shown that only for such parameters a
+significant pH effect could be found.
+
+SFO
+
+
+sfo_pH <- saem(f_sep_const["SFO", ], no_random_effect = "meso_0", covariates = pH,
+ covariate_models = list(log_k_meso ~ pH))
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_0
+91.35
+89.27
+93.43
+
+
+log_k_meso
+-6.66
+-7.97
+-5.35
+
+
+beta_pH(log_k_meso)
+0.59
+0.37
+0.81
+
+
+a.1
+5.48
+4.71
+6.24
+
+
+SD.log_k_meso
+0.35
+0.23
+0.47
+
+
+
+The parameter showing the pH influence in the above table is
+beta_pH(log_k_meso)
. Its confidence interval does not
+include zero, indicating that the influence of soil pH on the log of the
+degradation rate constant is significantly greater than zero.
+
+anova(f_saem_2[["SFO", "const"]], sfo_pH, test = TRUE)
+Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["SFO", "const"]] 4 797.56 801.12 -394.78
+sfo_pH 5 783.09 787.54 -386.54 16.473 1 4.934e-05 ***
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+The comparison with the SFO fit without covariate effect confirms
+that considering the soil pH improves the model, both by comparison of
+AIC and BIC and by the likelihood ratio test.
+
+plot(sfo_pH)
+
+Endpoints for a model with covariates are by default calculated for
+the median of the covariate values. This quantile can be adapted, or a
+specific covariate value can be given as shown below.
+
+endpoints(sfo_pH)
+$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90
+meso 18.52069 61.52441
+
+endpoints(sfo_pH, covariate_quantile = 0.9)
+$covariates
+ pH
+90% 7.13
+
+$distimes
+ DT50 DT90
+meso 8.237019 27.36278
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90
+meso 8.89035 29.5331
+
+
+FOMC
+
+
+fomc_pH <- saem(f_sep_const["FOMC", ], no_random_effect = "meso_0", covariates = pH,
+ covariate_models = list(log_alpha ~ pH))
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_0
+92.84
+90.75
+94.93
+
+
+log_alpha
+-2.21
+-3.49
+-0.92
+
+
+beta_pH(log_alpha)
+0.58
+0.37
+0.79
+
+
+log_beta
+4.21
+3.44
+4.99
+
+
+a.1
+5.03
+4.32
+5.73
+
+
+SD.log_alpha
+0.00
+-23.77
+23.78
+
+
+SD.log_beta
+0.37
+0.01
+0.74
+
+
+
+As in the case of SFO, the confidence interval of the slope parameter
+(here beta_pH(log_alpha)
) quantifying the influence of soil
+pH does not include zero, and the model comparison clearly indicates
+that the model with covariate influence is preferable. However, the
+random effect for alpha
is not well-defined any more after
+inclusion of the covariate effect (the confidence interval of
+SD.log_alpha
includes zero).
+
+illparms(fomc_pH)
+[1] "sd(log_alpha)"
+Therefore, the model is updated without this random effect, and no
+ill-defined parameters remain.
+
+
+anova(f_saem_2[["FOMC", "const"]], fomc_pH, fomc_pH_2, test = TRUE)
+Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["FOMC", "const"]] 5 783.25 787.71 -386.63
+fomc_pH_2 6 767.49 772.83 -377.75 17.762 1 2.503e-05 ***
+fomc_pH 7 770.07 776.30 -378.04 0.000 1 1
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+Model comparison indicates that including pH dependence significantly
+improves the fit, and that the reduced model with covariate influence
+results in the most preferable FOMC fit.
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_0
+93.05
+90.98
+95.13
+
+
+log_alpha
+-2.91
+-4.18
+-1.63
+
+
+beta_pH(log_alpha)
+0.66
+0.44
+0.87
+
+
+log_beta
+3.95
+3.29
+4.62
+
+
+a.1
+4.98
+4.28
+5.68
+
+
+SD.log_beta
+0.40
+0.26
+0.54
+
+
+
+
+plot(fomc_pH_2)
+
+
+endpoints(fomc_pH_2)
+$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back
+meso 17.30248 82.91343 24.95943
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back
+meso 6.986239 27.02927 8.136621
+
+
+DFOP
+
+In the DFOP fits without covariate effects, random effects for two
+degradation parameters (k2
and g
) were
+identifiable.
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_0
+93.61
+91.58
+95.63
+
+
+log_k1
+-1.53
+-2.27
+-0.79
+
+
+log_k2
+-3.42
+-3.73
+-3.11
+
+
+g_qlogis
+-1.67
+-2.57
+-0.77
+
+
+a.1
+4.74
+4.02
+5.45
+
+
+SD.log_k2
+0.60
+0.38
+0.81
+
+
+SD.g_qlogis
+0.94
+0.33
+1.54
+
+
+
+A fit with pH dependent degradation parameters was obtained by
+excluding the same random effects as in the refined DFOP fit without
+covariate influence, and including covariate models for the two
+identifiable parameters k2
and g
.
+
+dfop_pH <- saem(f_sep_const["DFOP", ], no_random_effect = c("meso_0", "log_k1"),
+ covariates = pH,
+ covariate_models = list(log_k2 ~ pH, g_qlogis ~ pH))
+The corresponding parameters for the influence of soil pH are
+beta_pH(log_k2)
for the influence of soil pH on
+k2
, and beta_pH(g_qlogis)
for its influence on
+g
.
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_0
+92.84
+90.85
+94.84
+
+
+log_k1
+-2.82
+-3.09
+-2.54
+
+
+log_k2
+-11.48
+-15.32
+-7.64
+
+
+beta_pH(log_k2)
+1.31
+0.69
+1.92
+
+
+g_qlogis
+3.13
+0.47
+5.80
+
+
+beta_pH(g_qlogis)
+-0.57
+-1.04
+-0.09
+
+
+a.1
+4.96
+4.26
+5.65
+
+
+SD.log_k2
+0.76
+0.47
+1.05
+
+
+SD.g_qlogis
+0.01
+-9.96
+9.97
+
+
+
+
+illparms(dfop_pH)
+[1] "sd(g_qlogis)"
+Confidence intervals for neither of them include zero, indicating a
+significant difference from zero. However, the random effect for
+g
is now ill-defined. The fit is updated without this
+ill-defined random effect.
+
+dfop_pH_2 <- update(dfop_pH,
+ no_random_effect = c("meso_0", "log_k1", "g_qlogis"))
+illparms(dfop_pH_2)
+[1] "beta_pH(g_qlogis)"
+Now, the slope parameter for the pH effect on g
is
+ill-defined. Therefore, another attempt is made without the
+corresponding covariate model.
+
+dfop_pH_3 <- saem(f_sep_const["DFOP", ], no_random_effect = c("meso_0", "log_k1"),
+ covariates = pH,
+ covariate_models = list(log_k2 ~ pH))
+illparms(dfop_pH_3)
+[1] "sd(g_qlogis)"
+As the random effect for g
is again ill-defined, the fit
+is repeated without it.
+
+dfop_pH_4 <- update(dfop_pH_3, no_random_effect = c("meso_0", "log_k1", "g_qlogis"))
+illparms(dfop_pH_4)
+While no ill-defined parameters remain, model comparison suggests
+that the previous model dfop_pH_2
with two pH dependent
+parameters is preferable, based on information criteria as well as based
+on the likelihood ratio test.
+
+anova(f_saem_2[["DFOP", "const"]], dfop_pH, dfop_pH_2, dfop_pH_3, dfop_pH_4)
+Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik
+f_saem_2[["DFOP", "const"]] 7 782.94 789.18 -384.47
+dfop_pH_4 7 767.35 773.58 -376.68
+dfop_pH_2 8 765.14 772.26 -374.57
+dfop_pH_3 8 769.00 776.12 -376.50
+dfop_pH 9 769.10 777.11 -375.55
+
+anova(dfop_pH_2, dfop_pH_4, test = TRUE)
+Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+dfop_pH_4 7 767.35 773.58 -376.68
+dfop_pH_2 8 765.14 772.26 -374.57 4.2153 1 0.04006 *
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+When focussing on parameter identifiability using the test if the
+confidence interval includes zero, dfop_pH_4
would still be
+the preferred model. However, it should be kept in mind that parameter
+confidence intervals are constructed using a simple linearisation of the
+likelihood. As the confidence interval of the random effect for
+g
only marginally includes zero, it is suggested that this
+is acceptable, and that dfop_pH_2
can be considered the
+most preferable model.
+
+plot(dfop_pH_2)
+
+
+endpoints(dfop_pH_2)
+$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 18.36876 73.51841 22.13125 4.191901 23.98672
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 8.346428 28.34437 8.532507 4.191901 8.753618
+
+
+SFORB
+
+
+sforb_pH <- saem(f_sep_const["SFORB", ], no_random_effect = c("meso_free_0", "log_k_meso_free_bound"),
+ covariates = pH,
+ covariate_models = list(log_k_meso_free ~ pH, log_k_meso_bound_free ~ pH))
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_free_0
+93.42
+91.32
+95.52
+
+
+log_k_meso_free
+-5.37
+-6.94
+-3.81
+
+
+beta_pH(log_k_meso_free)
+0.42
+0.18
+0.67
+
+
+log_k_meso_free_bound
+-3.49
+-4.92
+-2.05
+
+
+log_k_meso_bound_free
+-9.98
+-19.22
+-0.74
+
+
+beta_pH(log_k_meso_bound_free)
+1.23
+-0.21
+2.67
+
+
+a.1
+4.90
+4.18
+5.63
+
+
+SD.log_k_meso_free
+0.35
+0.23
+0.47
+
+
+SD.log_k_meso_bound_free
+0.13
+-1.95
+2.20
+
+
+
+The confidence interval of
+beta_pH(log_k_meso_bound_free)
includes zero, indicating
+that the influence of soil pH on k_meso_bound_free
cannot
+reliably be quantified. Also, the confidence interval for the random
+effect on this parameter (SD.log_k_meso_bound_free
)
+includes zero.
+Using the illparms
function, these ill-defined
+parameters can be found more conveniently.
+
+illparms(sforb_pH)
+[1] "sd(log_k_meso_bound_free)" "beta_pH(log_k_meso_bound_free)"
+To remove the ill-defined parameters, a second variant of the SFORB
+model with pH influence is fitted. No ill-defined parameters remain.
+
+sforb_pH_2 <- update(sforb_pH,
+ no_random_effect = c("meso_free_0", "log_k_meso_free_bound", "log_k_meso_bound_free"),
+ covariate_models = list(log_k_meso_free ~ pH))
+illparms(sforb_pH_2)
+The model comparison of the SFORB fits includes the refined model
+without covariate effect, and both versions of the SFORB fit with
+covariate effect.
+
+anova(f_saem_2[["SFORB", "const"]], sforb_pH, sforb_pH_2, test = TRUE)
+Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["SFORB", "const"]] 7 783.40 789.63 -384.70
+sforb_pH_2 7 770.94 777.17 -378.47 12.4616 0
+sforb_pH 9 768.81 776.83 -375.41 6.1258 2 0.04675 *
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+The first model including pH influence is preferable based on
+information criteria and the likelihood ratio test. However, as it is
+not fully identifiable, the second model is selected.
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_free_0
+93.32
+91.16
+95.48
+
+
+log_k_meso_free
+-6.15
+-7.43
+-4.86
+
+
+beta_pH(log_k_meso_free)
+0.54
+0.33
+0.75
+
+
+log_k_meso_free_bound
+-3.80
+-5.20
+-2.40
+
+
+log_k_meso_bound_free
+-2.95
+-4.26
+-1.64
+
+
+a.1
+5.08
+4.38
+5.79
+
+
+SD.log_k_meso_free
+0.33
+0.22
+0.45
+
+
+
+
+plot(sforb_pH_2)
+
+
+endpoints(sforb_pH_2)
+$covariates
+ pH
+50% 5.75
+
+$ff
+meso_free
+ 1
+
+$SFORB
+ meso_b1 meso_b2 meso_g
+0.09735824 0.02631699 0.31602120
+
+$distimes
+ DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
+meso 16.86549 73.15824 22.02282 7.119554 26.33839
+
+$covariates
+ pH
+User 7
+
+$ff
+meso_free
+ 1
+
+$SFORB
+ meso_b1 meso_b2 meso_g
+0.13315233 0.03795988 0.61186191
+
+$distimes
+ DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
+meso 7.932495 36.93311 11.11797 5.205671 18.26
+
+
+HS
+
+
+hs_pH <- saem(f_sep_const["HS", ], no_random_effect = c("meso_0"),
+ covariates = pH,
+ covariate_models = list(log_k1 ~ pH, log_k2 ~ pH, log_tb ~ pH))
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_0
+93.33
+91.47
+95.19
+
+
+log_k1
+-5.81
+-7.27
+-4.36
+
+
+beta_pH(log_k1)
+0.47
+0.23
+0.72
+
+
+log_k2
+-6.80
+-8.76
+-4.83
+
+
+beta_pH(log_k2)
+0.54
+0.21
+0.87
+
+
+log_tb
+3.25
+1.25
+5.25
+
+
+beta_pH(log_tb)
+-0.10
+-0.43
+0.23
+
+
+a.1
+4.49
+3.78
+5.21
+
+
+SD.log_k1
+0.37
+0.24
+0.51
+
+
+SD.log_k2
+0.29
+0.10
+0.48
+
+
+SD.log_tb
+0.25
+-0.07
+0.57
+
+
+
+
+illparms(hs_pH)
+[1] "sd(log_tb)" "beta_pH(log_tb)"
+According to the output of the illparms
function, the
+random effect on the break time tb
cannot reliably be
+quantified, neither can the influence of soil pH on tb
. The
+fit is repeated without the corresponding covariate model, and no
+ill-defined parameters remain.
+
+Model comparison confirms that this model is preferable to the fit
+without covariate influence, and also to the first version with
+covariate influence.
+
+anova(f_saem_2[["HS", "const"]], hs_pH, hs_pH_2, test = TRUE)
+Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["HS", "const"]] 8 780.08 787.20 -382.04
+hs_pH_2 10 766.47 775.37 -373.23 17.606 2 0.0001503 ***
+hs_pH 11 769.80 779.59 -373.90 0.000 1 1.0000000
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+
+
+
+
+est.
+lower
+upper
+
+
+
+meso_0
+93.33
+91.50
+95.15
+
+
+log_k1
+-5.68
+-7.09
+-4.27
+
+
+beta_pH(log_k1)
+0.46
+0.22
+0.69
+
+
+log_k2
+-6.61
+-8.34
+-4.88
+
+
+beta_pH(log_k2)
+0.50
+0.21
+0.79
+
+
+log_tb
+2.70
+2.33
+3.08
+
+
+a.1
+4.45
+3.74
+5.16
+
+
+SD.log_k1
+0.36
+0.22
+0.49
+
+
+SD.log_k2
+0.23
+0.02
+0.43
+
+
+SD.log_tb
+0.55
+0.25
+0.85
+
+
+
+
+plot(hs_pH_2)
+
+
+endpoints(hs_pH_2)
+$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 14.68725 82.45287 24.82079 14.68725 29.29299
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 8.298536 38.85371 11.69613 8.298536 15.71561
+
+
+Comparison across parent models
+
+After model reduction for all models with pH influence, they are
+compared with each other.
+
+anova(sfo_pH, fomc_pH_2, dfop_pH_2, dfop_pH_4, sforb_pH_2, hs_pH_2)
+Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik
+sfo_pH 5 783.09 787.54 -386.54
+fomc_pH_2 6 767.49 772.83 -377.75
+dfop_pH_4 7 767.35 773.58 -376.68
+sforb_pH_2 7 770.94 777.17 -378.47
+dfop_pH_2 8 765.14 772.26 -374.57
+hs_pH_2 10 766.47 775.37 -373.23
+The DFOP model with pH influence on k2
and
+g
and a random effect only on k2
is finally
+selected as the best fit.
+The endpoints resulting from this model are listed below. Please
+refer to the Appendix for a detailed listing.
+
+endpoints(dfop_pH_2)
+$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 18.36876 73.51841 22.13125 4.191901 23.98672
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 8.346428 28.34437 8.532507 4.191901 8.753618
+
+
+
+Conclusions
+
+These evaluations demonstrate that covariate effects can be included
+for all types of parent degradation models. These models can then be
+further refined to make them fully identifiable.
+
+
+Appendix
+
+
+
+Session info
+
+R version 4.3.1 (2023-06-16)
+Platform: x86_64-pc-linux-gnu (64-bit)
+Running under: Debian GNU/Linux 12 (bookworm)
+
+Matrix products: default
+BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0
+LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0
+
+locale:
+ [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
+ [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
+ [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
+ [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
+ [9] LC_ADDRESS=C LC_TELEPHONE=C
+[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
+
+time zone: Europe/Berlin
+tzcode source: system (glibc)
+
+attached base packages:
+[1] parallel stats graphics grDevices utils datasets methods
+[8] base
+
+other attached packages:
+[1] saemix_3.2 npde_3.3 knitr_1.43 mkin_1.2.5
+
+loaded via a namespace (and not attached):
+ [1] sass_0.4.6 utf8_1.2.3 generics_0.1.3 stringi_1.7.12
+ [5] lattice_0.20-45 digest_0.6.31 magrittr_2.0.3 evaluate_0.21
+ [9] grid_4.3.1 fastmap_1.1.1 cellranger_1.1.0 rprojroot_2.0.3
+[13] jsonlite_1.8.5 mclust_6.0.0 gridExtra_2.3 purrr_1.0.1
+[17] fansi_1.0.4 scales_1.2.1 codetools_0.2-19 textshaping_0.3.6
+[21] jquerylib_0.1.4 cli_3.6.1 rlang_1.1.1 munsell_0.5.0
+[25] cachem_1.0.8 yaml_2.3.7 tools_4.3.1 memoise_2.0.1
+[29] dplyr_1.1.2 colorspace_2.1-0 ggplot2_3.4.2 vctrs_0.6.2
+[33] R6_2.5.1 zoo_1.8-12 lifecycle_1.0.3 stringr_1.5.0
+[37] fs_1.6.2 ragg_1.2.5 pkgconfig_2.0.3 desc_1.4.2
+[41] pkgdown_2.0.7 bslib_0.4.2 pillar_1.9.0 gtable_0.3.3
+[45] glue_1.6.2 systemfonts_1.0.4 highr_0.10 xfun_0.39
+[49] tibble_3.2.1 lmtest_0.9-40 tidyselect_1.2.0 htmltools_0.5.5
+[53] nlme_3.1-162 rmarkdown_2.22 compiler_4.3.1 readxl_1.4.2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-14-1.png b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-14-1.png
new file mode 100644
index 00000000..863a48bd
Binary files /dev/null and b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-19-1.png b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-19-1.png
new file mode 100644
index 00000000..256b2b68
Binary files /dev/null and b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-19-1.png differ
diff --git a/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-25-1.png b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-25-1.png
new file mode 100644
index 00000000..59011020
Binary files /dev/null and b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-25-1.png differ
diff --git a/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-30-1.png b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-30-1.png
new file mode 100644
index 00000000..f427bc39
Binary files /dev/null and b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-30-1.png differ
diff --git a/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-8-1.png
new file mode 100644
index 00000000..7c3b460b
Binary files /dev/null and b/docs/articles/prebuilt/2023_mesotrione_parent_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/authors.html b/docs/authors.html
index 313c86e9..8b91ee77 100644
--- a/docs/authors.html
+++ b/docs/authors.html
@@ -17,7 +17,7 @@
@@ -132,13 +132,13 @@
Ranke J (2023).
mkin: Kinetic Evaluation of Chemical Degradation Data.
-R package version 1.2.4, https://pkgdown.jrwb.de/mkin/.
+R package version 1.2.5, https://pkgdown.jrwb.de/mkin/.
@Manual{,
title = {mkin: Kinetic Evaluation of Chemical Degradation Data},
author = {Johannes Ranke},
year = {2023},
- note = {R package version 1.2.4},
+ note = {R package version 1.2.5},
url = {https://pkgdown.jrwb.de/mkin/},
}
diff --git a/docs/index.html b/docs/index.html
index 06cdfdfb..79716087 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -44,7 +44,7 @@
diff --git a/docs/news/index.html b/docs/news/index.html
index 16fce355..7f7c0a6d 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -17,7 +17,7 @@
@@ -104,6 +104,12 @@
Source: NEWS.md
+
+mkin 1.2.5
+‘vignettes/mesotrione_parent_2023.rnw’: Prebuilt vignette showing how covariate modelling can be done for all relevant parent degradation models.
+‘inst/testdata/mesotrione_soil_efsa_2016}.xlsx’: Another example spreadsheets for use with ‘read_spreadsheet()’, featuring pH dependent degradation
+R/illparms.R: Fix the detection of ill-defined slope or error model parameters for the case that the estimate is negative
+
mkin 1.2.4
- R/endpoints.R: Fix the calculation of endpoints for user specified covariate values
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index fdcd875b..65d77082 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -8,6 +8,7 @@ articles:
2022_cyan_pathway: prebuilt/2022_cyan_pathway.html
2022_dmta_parent: prebuilt/2022_dmta_parent.html
2022_dmta_pathway: prebuilt/2022_dmta_pathway.html
+ 2023_mesotrione_parent: prebuilt/2023_mesotrione_parent.html
twa: twa.html
FOCUS_Z: web_only/FOCUS_Z.html
NAFTA_examples: web_only/NAFTA_examples.html
@@ -16,7 +17,7 @@ articles:
dimethenamid_2018: web_only/dimethenamid_2018.html
multistart: web_only/multistart.html
saem_benchmarks: web_only/saem_benchmarks.html
-last_built: 2023-05-19T09:04Z
+last_built: 2023-08-09T15:42Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/reference/D24_2014.html b/docs/reference/D24_2014.html
index fcc3cec3..1e35e864 100644
--- a/docs/reference/D24_2014.html
+++ b/docs/reference/D24_2014.html
@@ -22,7 +22,7 @@ constrained by data protection regulations.">