From 3151647526f299686b68420a83ae38cd7f3d08f5 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 9 Nov 2015 09:05:15 +0100 Subject: Rebuild vignettes and static documentation --- inst/web/ilr.html | 176 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 176 insertions(+) create mode 100644 inst/web/ilr.html (limited to 'inst/web/ilr.html') diff --git a/inst/web/ilr.html b/inst/web/ilr.html new file mode 100644 index 00000000..07076e73 --- /dev/null +++ b/inst/web/ilr.html @@ -0,0 +1,176 @@ + + + + +ilr. mkin 0.9-41 + + + + + + + + + + + + + + + + + +
+
+ +
+ +

+ Function to perform isometric log-ratio transformation +

+ +
+
+

Usage

+
ilr(x) invilr(x)
+ +

Arguments

+
+
x
+
+ A numeric vector. Naturally, the forward transformation is only sensible for + vectors with all elements being greater than zero. +
+
+ +
+

Description

+ +

This implementation is a special case of the class of isometric log-ratio transformations.

+ +
+ +
+

Value

+ +

+ The result of the forward or backward transformation. The returned components always + sum to 1 for the case of the inverse log-ratio transformation. +

+ +
+ +
+

References

+ +

Peter Filzmoser, Karel Hron (2008) Outlier Detection for Compositional Data Using Robust Methods. Math Geosci 40 233-248

+ +
+ +

Examples

+
# Order matters +ilr(c(0.1, 1, 10)) +
+
[1] -1.628174 -2.820079 +
+
ilr(c(10, 1, 0.1)) +
+
[1] 1.628174 2.820079 +
+
# Equal entries give ilr transformations with zeros as elements +ilr(c(3, 3, 3)) +
+
[1] 0 0 +
+
# Almost equal entries give small numbers +ilr(c(0.3, 0.4, 0.3)) +
+
[1] -0.2034219 0.1174457 +
+
# Only the ratio between the numbers counts, not their sum +invilr(ilr(c(0.7, 0.29, 0.01))) +
+
[1] 0.70 0.29 0.01 +
+
invilr(ilr(2.1 * c(0.7, 0.29, 0.01))) +
+
[1] 0.70 0.29 0.01 +
+
# Inverse transformation of larger numbers gives unequal elements +invilr(-10) +
+
[1] 7.213536e-07 9.999993e-01 +
+
invilr(c(-10, 0)) +
+
[1] 7.207415e-07 9.991507e-01 8.486044e-04 +
+
# The sum of the elements of the inverse ilr is 1 +sum(invilr(c(-10, 0))) +
+
[1] 1 +
+
# This is why we do not need all elements of the inverse transformation to go back: +a <- c(0.1, 0.3, 0.5) +b <- invilr(a) +length(b) # Four elements +
+
[1] 4 +
+
ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5) +
+
[1] 0.1 0.3 0.5 +
+
+
+ + +

See also

+ + Another implementation can be found in R package robCompositions. + + +

Author

+ + René Lehmann and Johannes Ranke + + +
+
+ + +
+ + \ No newline at end of file -- cgit v1.2.1