From 405cde11f9f26fcab0742e84c110cf3dcb2a4c1f Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 30 Mar 2020 14:03:51 +0200 Subject: First nlme fits for models with a metabolite --- man/memkin.Rd | 72 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 man/memkin.Rd (limited to 'man/memkin.Rd') diff --git a/man/memkin.Rd b/man/memkin.Rd new file mode 100644 index 00000000..cda9b468 --- /dev/null +++ b/man/memkin.Rd @@ -0,0 +1,72 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/memkin.R +\name{memkin} +\alias{memkin} +\title{Estimation of parameter distributions from mmkin row objects} +\usage{ +memkin(object, ...) +} +\arguments{ +\item{object}{An mmkin row object containing several fits of the same model to different datasets} + +\item{...}{Additional arguments passed to \code{\link{nlme}}} +} +\value{ +A fitted object of class 'memkin' +} +\description{ +This function sets up and attempts to fit a mixed effects model to +an mmkin row object which is essentially a list of mkinfit objects +that have been obtained by fitting the same model to a list of +datasets. +} +\examples{ +sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +m_SFO <- mkinmod(parent = mkinsub("SFO")) +d_SFO_1 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.1), + c(parent = 98), sampling_times) +d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") +d_SFO_2 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.05), + c(parent = 102), sampling_times) +d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") +d_SFO_3 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.02), + c(parent = 103), sampling_times) +d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") + +d1 <- add_err(d_SFO_1, function(value) 3, n = 1) +d2 <- add_err(d_SFO_2, function(value) 2, n = 1) +d3 <- add_err(d_SFO_3, function(value) 4, n = 1) +ds <- c(d1 = d1, d2 = d2, d3 = d3) + +f <- mmkin("SFO", ds) +x <- memkin(f) +summary(x) + +ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], + function(x) x$data[c("name", "time", "value")]) +m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), + A1 = mkinsub("SFO"), use_of_ff = "min") +m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), + A1 = mkinsub("SFO"), use_of_ff = "max") +m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), + A1 = mkinsub("SFO")) +m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), + A1 = mkinsub("SFO")) + +f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, + "SFO-SFO-ff" = m_sfo_sfo_ff, + "FOMC-SFO" = m_fomc_sfo, + "DFOP-SFO" = m_dfop_sfo), + ds_2) + +f_nlme_sfo_sfo <- memkin(f_2[1, ]) +\dontrun{f_nlme_sfo_sfo_ff <- memkin(f_2[2, ])} # does not converge with maxIter = 50 +f_nlme_fomc_sfo <- memkin(f_2[3, ]) +\dontrun{f_nlme_dfop_sfo <- memkin(f_2[4, ]) # apparently underdetermined} +anova(f_nlme_sfo_sfo, f_nlme_fomc_sfo) +# The FOMC variant has a lower AIC and has significantly higher likelihood +update(f_nlme_fomc_sfo) +} -- cgit v1.2.1