From 478c6d5eec4c84b22b43adcbdf36888b302ead00 Mon Sep 17 00:00:00 2001
From: Johannes Ranke Since mkin version 0.9-32 (July 2014), we can use shorthand notation like The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index. We can extract the summary and plot for e.g. the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects. The χ2 error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the χ2 test passes is slightly lower for the FOMC model. However, the difference appears negligible. The purpose of this document is to demonstrate how nonlinear
+hierarchical models (NLHM) based on the parent degradation models SFO,
+FOMC, DFOP and HS can be fitted with the mkin package. The mkin package is used in version 1.2.2. It contains the test data
+and the functions used in the evaluations. The This document is processed with the The test data are available in the mkin package as an object of class
+ The following commented R code performs this preprocessing. The following tables show the 6 datasets. In order to obtain suitable starting parameters for the NLHM fits,
+separate fits of the four models to the data for each soil are generated
+using the In the table above, OK indicates convergence, and C indicates failure
+to converge. All separate fits with constant variance converged, with
+the sole exception of the HS fit to the BBA 2.2 data. To prepare for
+fitting NLHM using the two-component error model, the separate fits are
+updated assuming two-component error. Using the two-component error model, the one fit that did not
+converge with constant variance did converge, but other non-SFO fits
+failed to converge. The following code fits eight versions of hierarchical models to the
+data, using SFO, FOMC, DFOP and HS for the parent compound, and using
+either constant variance or two-component error for the error model. The
+default parameter distribution model in mkin allows for variation of all
+degradation parameters across the assumed population of soils. In other
+words, each degradation parameter is associated with a random effect as
+a first step. The Convergence plots and summaries for these fits are shown in the
+appendix. The output of the The AIC and BIC values show that the biphasic models DFOP and HS give
+the best fits. The DFOP model is preferred here, as it has a better mechanistic
+basis for batch experiments with constant incubation conditions. Also,
+it shows the lowest AIC and BIC values in the first set of fits when
+combined with the two-component error model. Therefore, the DFOP model
+was selected for further refinements of the fits with the aim to make
+the model fully identifiable. Using the According to the The thus identified overparameterisation is addressed by removing the
+random effect for For the resulting fit, it is checked whether there are still
+ill-defined parameters, which is not the case. Below, the refined model is compared with the
+previous best model. The model without random effect for The AIC and BIC criteria are lower after removal of the ill-defined
+random effect for Therefore, AIC, BIC and likelihood ratio test suggest the use of the
+reduced model. The convergence of the fit is checked visually.
+Convergence plot for the NLHM DFOP fit with two-component error and
+without a random effect on ‘k2’
+ All parameters appear to have converged to a satisfactory degree. The
+final fit is plotted using the plot method from the mkin package.
+Plot of the final NLHM DFOP fit
+ Finally, a summary report of the fit is produced. The parameter check used in the The graph below shows boxplots of the parameters obtained in 50 runs
+of the saem algorithm with different parameter combinations, sampled
+from the range of the parameters obtained for the individual datasets
+fitted separately using nonlinear regression.
+Scaled parameters from the multistart runs, full model
+ The graph clearly confirms the lack of identifiability of the
+variance of The parameter boxplots of the multistart runs with the reduced model
+shown below indicate that all runs give similar results, regardless of
+the starting parameters.
+Scaled parameters from the multistart runs, reduced model
+ When only the parameters of the top 25% of the fits are shown (based
+on a feature introduced in mkin 1.2.2 currently under development), the
+scatter is even less as shown below.
+Scaled parameters from the multistart runs, reduced model, fits with the
+top 25% likelihood values
+ Fitting the four parent degradation models SFO, FOMC, DFOP and HS as
+part of hierarchical model fits with two different error models and
+normal distributions of the transformed degradation parameters works
+without technical problems. The biphasic models DFOP and HS gave the
+best fit to the data, but the default parameter distribution model was
+not fully identifiable. Removing the random effect for the second
+kinetic rate constant of the DFOP model resulted in a reduced model that
+was fully identifiable and showed the lowest values for the model
+selection criteria AIC and BIC. The reliability of the identification of
+all model parameters was confirmed using multiple starting values.
+Convergence plot for the NLHM SFO fit with constant variance
+
+Convergence plot for the NLHM SFO fit with two-component error
+
+Convergence plot for the NLHM FOMC fit with constant variance
+
+Convergence plot for the NLHM FOMC fit with two-component error
+
+Convergence plot for the NLHM DFOP fit with constant variance
+
+Convergence plot for the NLHM DFOP fit with two-component error
+
+Convergence plot for the NLHM HS fit with constant variance
+
+Convergence plot for the NLHM HS fit with two-component error
+ Ranke J (2022).
+ Ranke J (2023).
mkin: Kinetic Evaluation of Chemical Degradation Data.
R package version 1.2.2, https://pkgdown.jrwb.de/mkin/.
R markdown format for setting up hierarchical kinetics based on a template
+provided with the mkin package. Arguments to Keep the intermediate tex file used in the conversion to PDF R Markdown output format to pass to
+Example evaluation of FOCUS Laboratory Data L1 to L3
Johannes Ranke
-Last change 18 May 2022 (rebuilt 2022-09-14)
+Last change 18 May 2022 (rebuilt 2022-12-06)
@@ -1536,17 +1529,17 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
"SFO" for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.
-m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)## mkin version used for fitting: 1.1.2
-## R version used for fitting: 4.2.1
-## Date of fit: Wed Sep 14 22:28:35 2022
-## Date of summary: Wed Sep 14 22:28:35 2022
+## mkin version used for fitting: 1.2.2
+## R version used for fitting: 4.2.2
+## Date of fit: Tue Dec 6 09:39:45 2022
+## Date of summary: Tue Dec 6 09:39:45 2022
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 133 model solutions performed in 0.032 s
+## Fitted using 133 model solutions performed in 0.033 s
##
## Error model: Constant variance
##
@@ -1637,10 +1630,10 @@ summary(m.L1.SFO)## Warning in sqrt(1/diag(V)): NaNs produced
-## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful## mkin version used for fitting: 1.1.2
-## R version used for fitting: 4.2.1
-## Date of fit: Wed Sep 14 22:28:35 2022
-## Date of summary: Wed Sep 14 22:28:35 2022
+## mkin version used for fitting: 1.2.2
+## R version used for fitting: 4.2.2
+## Date of fit: Tue Dec 6 09:39:45 2022
+## Date of summary: Tue Dec 6 09:39:45 2022
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -1742,17 +1735,17 @@ plot(m.L2.FOMC, show_residuals = TRUE,
main = "FOCUS L2 - FOMC")
-summary(m.L2.FOMC, data = FALSE)## mkin version used for fitting: 1.1.2
-## R version used for fitting: 4.2.1
-## Date of fit: Wed Sep 14 22:28:35 2022
-## Date of summary: Wed Sep 14 22:28:35 2022
+## mkin version used for fitting: 1.2.2
+## R version used for fitting: 4.2.2
+## Date of fit: Tue Dec 6 09:39:45 2022
+## Date of summary: Tue Dec 6 09:39:45 2022
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.049 s
+## Fitted using 239 model solutions performed in 0.048 s
##
## Error model: Constant variance
##
@@ -1820,10 +1813,10 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = "FOCUS L2 - DFOP")
-summary(m.L2.DFOP, data = FALSE)## mkin version used for fitting: 1.1.2
-## R version used for fitting: 4.2.1
-## Date of fit: Wed Sep 14 22:28:36 2022
-## Date of summary: Wed Sep 14 22:28:36 2022
+## mkin version used for fitting: 1.2.2
+## R version used for fitting: 4.2.2
+## Date of fit: Tue Dec 6 09:39:46 2022
+## Date of summary: Tue Dec 6 09:39:46 2022
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1832,7 +1825,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted using 581 model solutions performed in 0.135 s
+## Fitted using 581 model solutions performed in 0.131 s
##
## Error model: Constant variance
##
@@ -1920,10 +1913,10 @@ plot(mm.L3)
-summary(mm.L3[["DFOP", 1]])## mkin version used for fitting: 1.1.2
-## R version used for fitting: 4.2.1
-## Date of fit: Wed Sep 14 22:28:36 2022
-## Date of summary: Wed Sep 14 22:28:36 2022
+
##
## Model predictions using solution type analytical
##
-## Fitted using 376 model solutions performed in 0.081 s
+## Fitted using 376 model solutions performed in 0.078 s
##
## Error model: Constant variance
##
@@ -2028,17 +2021,17 @@ plot(mm.L4)## mkin version used for fitting: 1.2.2
+## R version used for fitting: 4.2.2
+## Date of fit: Tue Dec 6 09:39:46 2022
+## Date of summary: Tue Dec 6 09:39:46 2022
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1932,7 +1925,7 @@ plot(mm.L3)
-summary(mm.L4[["SFO", 1]], data = FALSE)## mkin version used for fitting: 1.1.2
-## R version used for fitting: 4.2.1
-## Date of fit: Wed Sep 14 22:28:36 2022
-## Date of summary: Wed Sep 14 22:28:37 2022
+
## DT50 DT90
## parent 106 352## mkin version used for fitting: 1.2.2
+## R version used for fitting: 4.2.2
+## Date of fit: Tue Dec 6 09:39:47 2022
+## Date of summary: Tue Dec 6 09:39:47 2022
##
## Equations:
## d_parent/dt = - k_parent * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 142 model solutions performed in 0.034 s
+## Fitted using 142 model solutions performed in 0.03 s
##
## Error model: Constant variance
##
@@ -2092,10 +2085,10 @@ plot(mm.L4)
-summary(mm.L4[["FOMC", 1]], data = FALSE)## mkin version used for fitting: 1.1.2
-## R version used for fitting: 4.2.1
-## Date of fit: Wed Sep 14 22:28:37 2022
-## Date of summary: Wed Sep 14 22:28:37 2022
+## mkin version used for fitting: 1.2.2
+## R version used for fitting: 4.2.2
+## Date of fit: Tue Dec 6 09:39:47 2022
+## Date of summary: Tue Dec 6 09:39:47 2022
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
--
cgit v1.2.3
From 24eb77216700cf8b2f2bde3abad84c1f83f9e32a Mon Sep 17 00:00:00 2001
From: Johannes Ranke \n")
+}
+
diff --git a/R/tex_listing.R b/R/tex_listing.R
deleted file mode 100644
index 05f662e4..00000000
--- a/R/tex_listing.R
+++ /dev/null
@@ -1,32 +0,0 @@
-#' Wrap the output of a summary function in tex listing environment
-#'
-#' This function can be used in a R markdown code chunk with the chunk
-#' option `results = "asis"`.
-#'
-#' @param object The object for which the summary is to be listed
-#' @param caption An optional caption
-#' @param label An optional label
-#' @param clearpage Should a new page be started after the listing?
-#' @export
-tex_listing <- function(object, caption = NULL, label = NULL,
- clearpage = TRUE) {
- cat("\n")
- cat("\\begin{listing}", "\n")
- if (!is.null(caption)) {
- cat("\\caption{", caption, "}", "\n", sep = "")
- }
- if (!is.null(label)) {
- cat("\\caption{", label, "}", "\n", sep = "")
- }
- cat("\\begin{snugshade}", "\n")
- cat("\\scriptsize", "\n")
- cat("\\begin{verbatim}", "\n")
- cat(capture.output(suppressWarnings(summary(object))), sep = "\n")
- cat("\n")
- cat("\\end{verbatim}", "\n")
- cat("\\end{snugshade}", "\n")
- cat("\\end{listing}", "\n")
- if (clearpage) {
- cat("\\clearpage", "\n")
- }
-}
diff --git a/README.md b/README.md
index f3c36890..b6171767 100644
--- a/README.md
+++ b/README.md
@@ -214,6 +214,8 @@ to ModelMaker 4.0, 2014-2015)
of the visual fit in the kinetic evaluation of degradation data, 2019-2020)
- Project Number 146839 (Checking the feasibility of using mixed-effects models for
the derivation of kinetic modelling parameters from degradation studies, 2020-2021)
+- Project Number 173340 (Application of nonlinear hierarchical models to the
+ kinetic evaluation of chemical degradation data)
Thanks to everyone involved for collaboration and support!
diff --git a/_pkgdown.yml b/_pkgdown.yml
index ca5ea6e0..5d7fdbf4 100644
--- a/_pkgdown.yml
+++ b/_pkgdown.yml
@@ -47,6 +47,7 @@ reference:
- title: Mixed models
desc: Create and work with nonlinear hierarchical models
contents:
+ - hierarchical_kinetics
- read_spreadsheet
- nlme.mmkin
- saem.mmkin
@@ -92,7 +93,7 @@ reference:
- plot.nafta
- title: Utility functions
contents:
- - tex_listing
+ - summary_listing
- f_time_norm_focus
- set_nd_nq
- max_twa_parent
diff --git a/docs/dev/articles/2022_wp_1.1_dmta_parent.html b/docs/dev/articles/2022_wp_1.1_dmta_parent.html
new file mode 100644
index 00000000..61bb81d3
--- /dev/null
+++ b/docs/dev/articles/2022_wp_1.1_dmta_parent.html
@@ -0,0 +1,2177 @@
+
+
+
+
+
+
+
+\n")
+ cat(capture.output(suppressWarnings(summary(object))), sep = "\n")
+ cat("\n")
+ cat("Work package 1.1: Testing hierarchical parent
+degradation kinetics with residue data on dimethenamid and
+dimethenamid-P
+ Johannes
+Ranke
+
+ Last change on 5 January
+2022, last compiled on 5 Januar 2023
+
+ Source: vignettes/2022_wp_1.1_dmta_parent.rmd
+ 2022_wp_1.1_dmta_parent.rmdIntroduction
+
+saemix
+package is used as a backend for fitting the NLHM, but is also loaded to
+make the convergence plot function available.knitr package, which
+also provides the kable function that is used to improve
+the display of tabular data in R markdown documents. For parallel
+processing, the parallel package is used.
+
library(mkin)
+library(knitr)
+library(saemix)
+library(parallel)
+n_cores <- detectCores()
+if (Sys.info()["sysname"] == "Windows") {
+ cl <- makePSOCKcluster(n_cores)
+} else {
+ cl <- makeForkCluster(n_cores)
+}Preprocessing of test data
+
+mkindsg (mkin dataset group) under the identifier
+dimethenamid_2018. The following preprocessing steps are
+still necessary:
+
+Elliot 1
+and Elliot 2) are combined, resulting in dimethenamid
+(DMTA) data from six soils.
+
# Apply a function to each of the seven datasets in the mkindsg object to create a list
+dmta_ds <- lapply(1:7, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data # Get a dataset
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA" # Rename DMTAP to DMTA
+ ds_i <- subset(ds_i, name == "DMTA", c("name", "time", "value")) # Select data
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] # Normalise time
+ ds_i # Return the dataset
+})
+
+# Use dataset titles as names for the list elements
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+
+# Combine data for Elliot soil to obtain a named list with six elements
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) #
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
for (ds_name in names(dmta_ds)) {
+ print(kable(mkin_long_to_wide(dmta_ds[[ds_name]]),
+ caption = paste("Dataset", ds_name),
+ label = paste0("tab:", ds_name), booktabs = TRUE))
+ cat("\n\\clearpage\n")
+}
+
+
+
+
+time
+DMTA
+
+
+0
+95.8
+
+
+0
+98.7
+
+
+14
+60.5
+
+
+30
+39.1
+
+
+59
+15.2
+
+
+120
+4.8
+
+
+
+120
+4.6
+
+
+
+
+
+time
+DMTA
+
+
+0.000000
+100.5
+
+
+0.000000
+99.6
+
+
+1.941295
+91.9
+
+
+1.941295
+91.3
+
+
+6.794534
+81.8
+
+
+6.794534
+82.1
+
+
+13.589067
+69.1
+
+
+13.589067
+68.0
+
+
+27.178135
+51.4
+
+
+27.178135
+51.4
+
+
+56.297565
+27.6
+
+
+56.297565
+26.8
+
+
+86.387643
+15.7
+
+
+86.387643
+15.3
+
+
+115.507073
+7.9
+
+
+
+115.507073
+8.1
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+96.5
+
+
+0.0000000
+96.8
+
+
+0.0000000
+97.0
+
+
+0.6233856
+82.9
+
+
+0.6233856
+86.7
+
+
+0.6233856
+87.4
+
+
+1.8701567
+72.8
+
+
+1.8701567
+69.9
+
+
+1.8701567
+71.9
+
+
+4.3636989
+51.4
+
+
+4.3636989
+52.9
+
+
+4.3636989
+48.6
+
+
+8.7273979
+28.5
+
+
+8.7273979
+27.3
+
+
+8.7273979
+27.5
+
+
+13.0910968
+14.8
+
+
+13.0910968
+13.4
+
+
+13.0910968
+14.4
+
+
+17.4547957
+7.7
+
+
+17.4547957
+7.3
+
+
+17.4547957
+8.1
+
+
+26.1821936
+2.0
+
+
+26.1821936
+1.5
+
+
+26.1821936
+1.9
+
+
+34.9095915
+1.3
+
+
+34.9095915
+1.0
+
+
+34.9095915
+1.1
+
+
+43.6369893
+0.9
+
+
+43.6369893
+0.7
+
+
+43.6369893
+0.7
+
+
+52.3643872
+0.6
+
+
+52.3643872
+0.4
+
+
+52.3643872
+0.5
+
+
+74.8062674
+0.4
+
+
+74.8062674
+0.3
+
+
+
+74.8062674
+0.3
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+98.09
+
+
+0.0000000
+98.77
+
+
+0.7678922
+93.52
+
+
+0.7678922
+92.03
+
+
+2.3036765
+88.39
+
+
+2.3036765
+87.18
+
+
+5.3752452
+69.38
+
+
+5.3752452
+71.06
+
+
+10.7504904
+45.21
+
+
+10.7504904
+46.81
+
+
+16.1257355
+30.54
+
+
+16.1257355
+30.07
+
+
+21.5009807
+21.60
+
+
+21.5009807
+20.41
+
+
+32.2514711
+9.10
+
+
+32.2514711
+9.70
+
+
+43.0019614
+6.58
+
+
+43.0019614
+6.31
+
+
+53.7524518
+3.47
+
+
+53.7524518
+3.52
+
+
+64.5029421
+3.40
+
+
+64.5029421
+3.67
+
+
+91.3791680
+1.62
+
+
+
+91.3791680
+1.62
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+99.33
+
+
+0.0000000
+97.44
+
+
+0.6733938
+93.73
+
+
+0.6733938
+93.77
+
+
+2.0201814
+87.84
+
+
+2.0201814
+89.82
+
+
+4.7137565
+71.61
+
+
+4.7137565
+71.42
+
+
+9.4275131
+45.60
+
+
+9.4275131
+45.42
+
+
+14.1412696
+31.12
+
+
+14.1412696
+31.68
+
+
+18.8550262
+23.20
+
+
+18.8550262
+24.13
+
+
+28.2825393
+9.43
+
+
+28.2825393
+9.82
+
+
+37.7100523
+7.08
+
+
+37.7100523
+8.64
+
+
+47.1375654
+4.41
+
+
+47.1375654
+4.78
+
+
+56.5650785
+4.92
+
+
+56.5650785
+5.08
+
+
+80.1338612
+2.13
+
+
+
+80.1338612
+2.23
+
+
+
+
+
+time
+DMTA
+
+
+0.000000
+97.5
+
+
+0.000000
+100.7
+
+
+1.228478
+86.4
+
+
+1.228478
+88.5
+
+
+3.685435
+69.8
+
+
+3.685435
+77.1
+
+
+8.599349
+59.0
+
+
+8.599349
+54.2
+
+
+17.198697
+31.3
+
+
+17.198697
+33.5
+
+
+25.798046
+19.6
+
+
+25.798046
+20.9
+
+
+34.397395
+13.3
+
+
+34.397395
+15.8
+
+
+51.596092
+6.7
+
+
+51.596092
+8.7
+
+
+68.794789
+8.8
+
+
+68.794789
+8.7
+
+
+103.192184
+6.0
+
+
+103.192184
+4.4
+
+
+146.188928
+3.3
+
+
+146.188928
+2.8
+
+
+223.583066
+1.4
+
+
+223.583066
+1.8
+
+
+0.000000
+93.4
+
+
+0.000000
+103.2
+
+
+1.228478
+89.2
+
+
+1.228478
+86.6
+
+
+3.685435
+78.2
+
+
+3.685435
+78.1
+
+
+8.599349
+55.6
+
+
+8.599349
+53.0
+
+
+17.198697
+33.7
+
+
+17.198697
+33.2
+
+
+25.798046
+20.9
+
+
+25.798046
+19.9
+
+
+34.397395
+18.2
+
+
+34.397395
+12.7
+
+
+51.596092
+7.8
+
+
+51.596092
+9.0
+
+
+68.794789
+11.4
+
+
+68.794789
+9.0
+
+
+103.192184
+3.9
+
+
+103.192184
+4.4
+
+
+146.188928
+2.6
+
+
+146.188928
+3.4
+
+
+223.583066
+2.0
+
+
+
+223.583066
+1.7
+Separate evaluations
+
+mmkin function from the mkin
+package. In a first step, constant variance is assumed. Convergence is
+checked with the status function.
+
deg_mods <- c("SFO", "FOMC", "DFOP", "HS")
+f_sep_const <- mmkin(
+ deg_mods,
+ dmta_ds,
+ error_model = "const",
+ quiet = TRUE)
+
+status(f_sep_const) |> kable()
+
+
+
+
+
+ Calke
+Borstel
+Flaach
+BBA 2.2
+BBA 2.3
+Elliot
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+DFOP
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+
+HS
+OK
+OK
+OK
+C
+OK
+OK
+
+
+
+
+
+
+ Calke
+Borstel
+Flaach
+BBA 2.2
+BBA 2.3
+Elliot
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+C
+OK
+
+
+DFOP
+OK
+OK
+C
+OK
+C
+OK
+
+
+
+HS
+OK
+C
+OK
+OK
+OK
+OK
+Hierarchichal model fits
+
+mhmkin function makes it possible to fit
+all eight versions in parallel (given a sufficient number of computing
+cores being available) to save execution time.status function shows that all fits
+terminated successfully.
+
+
+
+
+
+ const
+tc
+
+
+SFO
+OK
+OK
+
+
+FOMC
+OK
+OK
+
+
+DFOP
+OK
+OK
+
+
+
+HS
+OK
+OK
+
+
+
+
+
+
+ npar
+AIC
+BIC
+Lik
+
+
+SFO const
+5
+796.3
+795.3
+-393.2
+
+
+SFO tc
+6
+798.3
+797.1
+-393.2
+
+
+FOMC const
+7
+734.2
+732.7
+-360.1
+
+
+FOMC tc
+8
+720.4
+718.8
+-352.2
+
+
+DFOP const
+9
+711.8
+710.0
+-346.9
+
+
+HS const
+9
+714.0
+712.1
+-348.0
+
+
+DFOP tc
+10
+665.5
+663.4
+-322.8
+
+
+
+HS tc
+10
+667.1
+665.0
+-323.6
+Parameter identifiability based on the Fisher Information
+Matrix
+
+illparms function, ill-defined statistical
+model parameters such as standard deviations of the degradation
+parameters in the population and error model parameters can be
+found.
+
+
+
+
+
+ const
+tc
+
+
+SFO
+
+ b.1
+
+
+FOMC
+
+ sd(DMTA_0)
+
+
+DFOP
+sd(k2)
+sd(k2)
+
+
+
+HS
+
+ sd(tb)
+illparms function, the fitted standard
+deviation of the second kinetic rate constant k2 is
+ill-defined in both DFOP fits. This suggests that different values would
+be obtained for this standard deviation when using different starting
+values.k2 from the parameter model.
+
f_saem_dfop_tc_no_ranef_k2 <- update(f_saem[["DFOP", "tc"]],
+ no_random_effect = "k2")
+
illparms(f_saem_dfop_tc_no_ranef_k2)k2
+is a reduced version of the previous model. Therefore, the models are
+nested and can be compared using the likelihood ratio test. This is
+achieved with the argument test = TRUE to the
+anova function.
+
anova(f_saem[["DFOP", "tc"]], f_saem_dfop_tc_no_ranef_k2, test = TRUE) |>
+ kable(format.args = list(digits = 4))
+
+
+
+
+
+ npar
+AIC
+BIC
+Lik
+Chisq
+Df
+Pr(>Chisq)
+
+
+f_saem_dfop_tc_no_ranef_k2
+9
+663.8
+661.9
+-322.9
+NA
+NA
+NA
+
+
+
+f_saem[[“DFOP”, “tc”]]
+10
+665.5
+663.4
+-322.8
+0.2809
+1
+0.5961
+k2. The p value of the likelihood ratio
+test is much greater than 0.05, indicating that the model with the
+higher likelihood (here the model with random effects for all
+degradation parameters f_saem[["DFOP", "tc"]]) does not fit
+significantly better than the model with the lower likelihood (the
+reduced model f_saem_dfop_tc_no_ranef_k2).
+
plot(f_saem_dfop_tc_no_ranef_k2)
+
summary(f_saem_dfop_tc_no_ranef_k2)
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:13 2023
+Date of summary: Thu Jan 5 08:19:13 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 4.075 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.759266 0.087034 0.009933 0.930827
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.76 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 663.8 661.9 -322.9
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.228939 96.285869 100.17201
+k1 0.064063 0.033477 0.09465
+k2 0.008297 0.005824 0.01077
+g 0.953821 0.914328 0.99331
+a.1 1.068479 0.869538 1.26742
+b.1 0.029424 0.022406 0.03644
+SD.DMTA_0 2.030437 0.404824 3.65605
+SD.k1 0.594692 0.256660 0.93272
+SD.g 1.006754 0.361327 1.65218
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0218
+k2 0.0556 0.0355
+g -0.0516 -0.0284 -0.2800
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.0304 0.4048 3.6560
+SD.k1 0.5947 0.2567 0.9327
+SD.g 1.0068 0.3613 1.6522
+
+Variance model:
+ est. lower upper
+a.1 1.06848 0.86954 1.26742
+b.1 0.02942 0.02241 0.03644
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.45 41.4 12.46 10.82 83.54Alternative check of parameter identifiability
+
+illparms function is
+based on a quadratic approximation of the likelihood surface near its
+optimum, which is calculated using the Fisher Information Matrix (FIM).
+An alternative way to check parameter identifiability based on a
+multistart approach has recently been implemented in mkin.
+
f_saem_dfop_tc_multi <- multistart(f_saem[["DFOP", "tc"]], n = 50, cores = 15)
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_multi, lpos = "bottomright", ylim = c(0.3, 10), las = 2)
k2 in the full model. The overparameterisation
+of the model also indicates a lack of identifiability of the variance of
+parameter g.
+
f_saem_dfop_tc_no_ranef_k2_multi <- multistart(f_saem_dfop_tc_no_ranef_k2,
+ n = 50, cores = 15)
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_no_ranef_k2_multi, ylim = c(0.5, 2), las = 2,
+ lpos = "bottomright")
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_no_ranef_k2_multi, ylim = c(0.5, 2), las = 2, llquant = 0.25,
+ lpos = "bottomright")
Conclusions
+
+Appendix
+
+Hierarchical model fit listings
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:06 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - k_DMTA * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.09 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k_DMTA
+97.2953 0.0566
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k_DMTA
+DMTA_0 97.3 0
+k_DMTA 0.0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 796.3 795.3 -393.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.28130 95.71113 98.8515
+k_DMTA 0.05665 0.02909 0.0842
+a.1 2.66442 2.35579 2.9731
+SD.DMTA_0 1.54776 0.15447 2.9411
+SD.k_DMTA 0.60690 0.26248 0.9513
+
+Correlation:
+ DMTA_0
+k_DMTA 0.0168
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5478 0.1545 2.9411
+SD.k_DMTA 0.6069 0.2625 0.9513
+
+Variance model:
+ est. lower upper
+a.1 2.664 2.356 2.973
+
+Estimated disappearance times:
+ DT50 DT90
+DMTA 12.24 40.65
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - k_DMTA * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.441 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k_DMTA
+96.99175 0.05603
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k_DMTA
+DMTA_0 96.99 0
+k_DMTA 0.00 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 798.3 797.1 -393.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.271822 95.703157 98.84049
+k_DMTA 0.056638 0.029110 0.08417
+a.1 2.660081 2.230398 3.08976
+b.1 0.001665 -0.006911 0.01024
+SD.DMTA_0 1.545520 0.145035 2.94601
+SD.k_DMTA 0.606422 0.262274 0.95057
+
+Correlation:
+ DMTA_0
+k_DMTA 0.0169
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5455 0.1450 2.9460
+SD.k_DMTA 0.6064 0.2623 0.9506
+
+Variance model:
+ est. lower upper
+a.1 2.660081 2.230398 3.08976
+b.1 0.001665 -0.006911 0.01024
+
+Estimated disappearance times:
+ DT50 DT90
+DMTA 12.24 40.65
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:06 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.156 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 alpha beta
+ 98.292 9.909 156.341
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 alpha beta
+DMTA_0 98.29 0 0
+alpha 0.00 1 0
+beta 0.00 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 734.2 732.7 -360.1
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.3435 96.9033 99.784
+alpha 7.2007 2.5889 11.812
+beta 112.8746 34.8816 190.868
+a.1 2.0459 1.8054 2.286
+SD.DMTA_0 1.4795 0.2717 2.687
+SD.alpha 0.6396 0.1509 1.128
+SD.beta 0.6874 0.1587 1.216
+
+Correlation:
+ DMTA_0 alpha
+alpha -0.1125
+beta -0.1227 0.3632
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.4795 0.2717 2.687
+SD.alpha 0.6396 0.1509 1.128
+SD.beta 0.6874 0.1587 1.216
+
+Variance model:
+ est. lower upper
+a.1 2.046 1.805 2.286
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+DMTA 11.41 42.53 12.8
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.729 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+DMTA_0 alpha beta
+98.772 4.663 92.597
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 alpha beta
+DMTA_0 98.77 0 0
+alpha 0.00 1 0
+beta 0.00 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 720.4 718.8 -352.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.99136 97.26011 100.72261
+alpha 5.86312 2.57485 9.15138
+beta 88.55571 29.20889 147.90254
+a.1 1.51063 1.24384 1.77741
+b.1 0.02824 0.02040 0.03609
+SD.DMTA_0 1.57436 -0.04867 3.19739
+SD.alpha 0.59871 0.17132 1.02611
+SD.beta 0.72994 0.22849 1.23139
+
+Correlation:
+ DMTA_0 alpha
+alpha -0.1363
+beta -0.1414 0.2542
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5744 -0.04867 3.197
+SD.alpha 0.5987 0.17132 1.026
+SD.beta 0.7299 0.22849 1.231
+
+Variance model:
+ est. lower upper
+a.1 1.51063 1.2438 1.77741
+b.1 0.02824 0.0204 0.03609
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+DMTA 11.11 42.6 12.82
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.007 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.64383 0.09211 0.02999 0.76814
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.64 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 711.8 710 -346.9
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.092481 96.573898 99.61106
+k1 0.062499 0.030336 0.09466
+k2 0.009065 -0.005133 0.02326
+g 0.948967 0.862079 1.03586
+a.1 1.821671 1.604774 2.03857
+SD.DMTA_0 1.677785 0.472066 2.88350
+SD.k1 0.634962 0.270788 0.99914
+SD.k2 1.033498 -0.205994 2.27299
+SD.g 1.710046 0.428642 2.99145
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0246
+k2 0.0491 0.0953
+g -0.0552 -0.0889 -0.4795
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.678 0.4721 2.8835
+SD.k1 0.635 0.2708 0.9991
+SD.k2 1.033 -0.2060 2.2730
+SD.g 1.710 0.4286 2.9914
+
+Variance model:
+ est. lower upper
+a.1 1.822 1.605 2.039
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.79 42.8 12.88 11.09 76.46
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:08 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.033 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.759266 0.087034 0.009933 0.930827
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.76 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 665.5 663.4 -322.8
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.377019 96.447952 100.30609
+k1 0.064843 0.034607 0.09508
+k2 0.008895 0.006368 0.01142
+g 0.949696 0.903815 0.99558
+a.1 1.065241 0.865754 1.26473
+b.1 0.029340 0.022336 0.03634
+SD.DMTA_0 2.007754 0.387982 3.62753
+SD.k1 0.580473 0.250286 0.91066
+SD.k2 0.006105 -4.920337 4.93255
+SD.g 1.097149 0.412779 1.78152
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0235
+k2 0.0595 0.0424
+g -0.0470 -0.0278 -0.2731
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.007754 0.3880 3.6275
+SD.k1 0.580473 0.2503 0.9107
+SD.k2 0.006105 -4.9203 4.9325
+SD.g 1.097149 0.4128 1.7815
+
+Variance model:
+ est. lower upper
+a.1 1.06524 0.86575 1.26473
+b.1 0.02934 0.02234 0.03634
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.36 41.32 12.44 10.69 77.92
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.004 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 tb
+97.82176 0.06931 0.02997 11.13945
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 tb
+DMTA_0 97.82 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+tb 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 714 712.1 -348
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.16102 96.47747 99.84456
+k1 0.07876 0.05261 0.10491
+k2 0.02227 0.01706 0.02747
+tb 13.99089 -7.40049 35.38228
+a.1 1.82305 1.60700 2.03910
+SD.DMTA_0 1.88413 0.56204 3.20622
+SD.k1 0.34292 0.10482 0.58102
+SD.k2 0.19851 0.01718 0.37985
+SD.tb 1.68168 0.58064 2.78272
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0142
+k2 0.0001 -0.0025
+tb 0.0165 -0.1256 -0.0301
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.8841 0.56204 3.2062
+SD.k1 0.3429 0.10482 0.5810
+SD.k2 0.1985 0.01718 0.3798
+SD.tb 1.6817 0.58064 2.7827
+
+Variance model:
+ est. lower upper
+a.1 1.823 1.607 2.039
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 8.801 67.91 20.44 8.801 31.13
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:08 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.287 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 tb
+98.45190 0.07525 0.02576 19.19375
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 tb
+DMTA_0 98.45 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+tb 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 667.1 665 -323.6
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.76570 95.81350 99.71791
+k1 0.05855 0.03080 0.08630
+k2 0.02337 0.01664 0.03010
+tb 31.09638 29.38289 32.80987
+a.1 1.08835 0.88590 1.29080
+b.1 0.02964 0.02257 0.03671
+SD.DMTA_0 2.04877 0.42607 3.67147
+SD.k1 0.59166 0.25621 0.92711
+SD.k2 0.30698 0.09561 0.51835
+SD.tb 0.01274 -0.10914 0.13462
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0160
+k2 -0.0070 -0.0024
+tb -0.0668 -0.0103 -0.2013
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.04877 0.42607 3.6715
+SD.k1 0.59166 0.25621 0.9271
+SD.k2 0.30698 0.09561 0.5183
+SD.tb 0.01274 -0.10914 0.1346
+
+Variance model:
+ est. lower upper
+a.1 1.08835 0.88590 1.29080
+b.1 0.02964 0.02257 0.03671
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.84 51.71 15.57 11.84 29.66
+
+Hierarchical model convergence plots
+
+







Session info
+
+
+R version 4.2.2 Patched (2022-11-10 r83330)
+Platform: x86_64-pc-linux-gnu (64-bit)
+Running under: Debian GNU/Linux bookworm/sid
+
+Matrix products: default
+BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3
+LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so
+
+locale:
+ [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
+ [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
+ [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
+ [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
+ [9] LC_ADDRESS=C LC_TELEPHONE=C
+[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
+
+attached base packages:
+[1] parallel stats graphics grDevices utils datasets methods
+[8] base
+
+other attached packages:
+[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2
+
+loaded via a namespace (and not attached):
+ [1] deSolve_1.34 zoo_1.8-11 tidyselect_1.2.0 xfun_0.35
+ [5] bslib_0.4.2 purrr_1.0.0 lattice_0.20-45 colorspace_2.0-3
+ [9] vctrs_0.5.1 generics_0.1.3 htmltools_0.5.4 yaml_2.3.6
+[13] utf8_1.2.2 rlang_1.0.6 pkgdown_2.0.7 jquerylib_0.1.4
+[17] pillar_1.8.1 glue_1.6.2 DBI_1.1.3 lifecycle_1.0.3
+[21] stringr_1.5.0 munsell_0.5.0 gtable_0.3.1 ragg_1.2.4
+[25] codetools_0.2-18 memoise_2.0.1 evaluate_0.19 fastmap_1.1.0
+[29] lmtest_0.9-40 fansi_1.0.3 highr_0.9 scales_1.2.1
+[33] cachem_1.0.6 desc_1.4.2 jsonlite_1.8.4 systemfonts_1.0.4
+[37] fs_1.5.2 textshaping_0.3.6 gridExtra_2.3 ggplot2_3.4.0
+[41] digest_0.6.31 stringi_1.7.8 dplyr_1.0.10 grid_4.2.2
+[45] rprojroot_2.0.3 cli_3.5.0 tools_4.2.2 magrittr_2.0.3
+[49] sass_0.4.4 tibble_3.1.8 pkgconfig_2.0.3 assertthat_0.2.1
+[53] rmarkdown_2.19 R6_2.5.1 mclust_6.0.0 nlme_3.1-161
+[57] compiler_4.2.2 All vignettes
- @Manual{,
title = {mkin: Kinetic Evaluation of Chemical Degradation Data},
author = {Johannes Ranke},
- year = {2022},
+ year = {2023},
note = {R package version 1.2.2},
url = {https://pkgdown.jrwb.de/mkin/},
}
@@ -136,7 +136,7 @@ R package version 1.2.2, https://pkgdown
diff --git a/docs/dev/index.html b/docs/dev/index.html
index 4723879e..993b8eea 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -19,11 +19,11 @@
equation models are solved using automatically generated C functions.
Heteroscedasticity can be taken into account using variance by variable or
two-component error models as described by Ranke and Meinecke (2018)
- <doi:10.3390/environments6120124>. Interfaces to several nonlinear
- mixed-effects model packages are available, some of which are described by
- Ranke et al. (2021) <doi:10.3390/environments8080071>. Please note that no
- warranty is implied for correctness of results or fitness for a particular
- purpose.">
+ <doi:10.3390/environments6120124>. Hierarchical degradation models can
+ be fitted using nonlinear mixed-effects model packages as a backend as
+ described by Ranke et al. (2021) <doi:10.3390/environments8080071>. Please
+ note that no warranty is implied for correctness of results or fitness for a
+ particular purpose.">
hierarchical_kinetics(..., keep_tex = FALSE)Arguments
+ rmarkdown::pdf_documentValue
+
+
+render
Create and work with nonlinear hierarchical models
Hierarchical kinetics template
Read datasets and relevant meta information from a spreadsheet file
Wrap the output of a summary function in tex listing environment
Display the output of a summary function according to the output format
mkinsub() has an argument to, specifying names of
variables to which a transfer is to be assumed in the model.
If the argument use_of_ff is set to "min"
-(default) and the model for the compartment is "SFO" or "SFORB", an
+and the model for the compartment is "SFO" or "SFORB", an
additional mkinsub() argument can be sink = FALSE, effectively
fixing the flux to sink to zero.
In print.mkinmod, this argument is currently not used.
@@ -247,7 +247,7 @@ in the FOCUS and NAFTA guidance documents are used.
For kinetic models with more than one observed variable, a symbolic solution of the system of differential equations is included in the resulting mkinmod object in some cases, speeding up the solution.
-If a C compiler is found by pkgbuild::has_compiler() and there
+
If a C compiler is found by pkgbuild::has_compiler() and there
is more than one observed variable in the specification, C code is generated
for evaluating the differential equations, compiled using
inline::cfunction() and added to the resulting mkinmod object.
R/summary_listing.R
+ summary_listing.RdThis function is intended for use in a R markdown code chunk with the chunk
+option results = "asis".
summary_listing(object, caption = NULL, label = NULL, clearpage = TRUE)
+
+tex_listing(object, caption = NULL, label = NULL, clearpage = TRUE)
+
+html_listing(object, caption = NULL)The object for which the summary is to be listed
An optional caption
An optional label, ignored in html output
Should a new page be started after the listing? Ignored in html output