From 4a2809943b4bcb234f1eb979619c8cd27341c124 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 22 Jun 2015 22:18:44 +0200 Subject: Vignettes rebuilt by staticdocs::build_site() for static documentation on r-forge --- vignettes/compiled_models.html | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) (limited to 'vignettes/compiled_models.html') diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html index ed61b47a..0b77f1c2 100644 --- a/vignettes/compiled_models.html +++ b/vignettes/compiled_models.html @@ -98,19 +98,19 @@ mb.1 <- microbenchmark( smb.1 <- summary(mb.1)[-1] rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled") print(smb.1) -
##                             min        lq      mean    median        uq
-## deSolve, not compiled 6585.7039 6651.4937 6685.6248 6717.2836 6735.5853
-## Eigenvalue based       971.2893  981.5618  998.2746  991.8344 1011.7673
-## deSolve, compiled      760.5522  765.4274  780.3243  770.3026  790.2103
-##                             max neval
-## deSolve, not compiled 6753.8871     3
-## Eigenvalue based      1031.7003     3
-## deSolve, compiled      810.1179     3
-

We see that using the compiled model is by a factor of 8.7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:

+
##                            min        lq      mean    median        uq
+## deSolve, not compiled 6737.589 6818.2149 6911.3916 6898.8407 6998.2929
+## Eigenvalue based       945.433  968.8592  979.7477  992.2854  996.9051
+## deSolve, compiled      744.785  748.8107  770.7521  752.8364  783.7357
+##                            max neval
+## deSolve, not compiled 7097.745     3
+## Eigenvalue based      1001.525     3
+## deSolve, compiled      814.635     3
+

We see that using the compiled model is by a factor of 9.2 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:

smb.1["median"]/smb.1["deSolve, compiled", "median"]
##                         median
-## deSolve, not compiled 8.720318
-## Eigenvalue based      1.287591
+## deSolve, not compiled 9.163798
+## Eigenvalue based      1.318062
 ## deSolve, compiled     1.000000
@@ -128,15 +128,15 @@ smb.2 <- summary(mb.2)[-1] rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled") print(smb.2)
##                             min        lq      mean    median        uq
-## deSolve, not compiled 14.271472 14.285039 14.303450 14.298607 14.319440
-## deSolve, compiled      1.350642  1.390549  1.412823  1.430456  1.443914
+## deSolve, not compiled 13.955273 13.961009 14.041563 13.966745 14.084708
+## deSolve, compiled      1.350567  1.371225  1.381397  1.391882  1.396812
 ##                             max neval
-## deSolve, not compiled 14.340272     3
-## deSolve, compiled      1.457372     3
+## deSolve, not compiled 14.202672 3 +## deSolve, compiled 1.401743 3
smb.2["median"]/smb.2["deSolve, compiled", "median"]
##                         median
-## deSolve, not compiled 9.995841
-## deSolve, compiled     1.000000
+## deSolve, not compiled 10.03443 +## deSolve, compiled 1.00000

Here we get a performance benefit of a factor of 10 using the version of the differential equation model compiled from C code using the inline package!

This vignette was built with mkin 0.9.37 on

## R version 3.2.1 (2015-06-18)
-- 
cgit v1.2.1