From cb318ea1067bf18d8ff896cef8d1e847a49e3aa7 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Tue, 28 Jun 2016 01:43:13 +0200 Subject: Static documentation rebuilt by staticdocs::build_site() --- vignettes/compiled_models.html | 32 ++++++++++++++++---------------- 1 file changed, 16 insertions(+), 16 deletions(-) (limited to 'vignettes/compiled_models.html') diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html index 3a81c6c3..9e2dff36 100644 --- a/vignettes/compiled_models.html +++ b/vignettes/compiled_models.html @@ -250,21 +250,21 @@ mb.1 <- microbenchmark( print(mb.1)
## Unit: seconds
 ##                   expr       min        lq      mean    median        uq
-##  deSolve, not compiled 25.634645 25.717260 25.925956 25.799875 26.071612
-##       Eigenvalue based  2.235689  2.237675  2.246796  2.239661  2.252349
-##      deSolve, compiled  1.869556  1.881345  1.887495  1.893133  1.896465
+##  deSolve, not compiled 25.160343 25.384579 25.502052 25.608814 25.672906
+##       Eigenvalue based  2.219737  2.234679  2.244043  2.249621  2.256196
+##      deSolve, compiled  1.825299  1.843813  1.856078  1.862327  1.871467
 ##        max neval cld
-##  26.343349     3   b
-##   2.265038     3  a 
-##   1.899797     3  a
+## 25.736998 3 b +## 2.262771 3 a +## 1.880606 3 a
autoplot(mb.1)
-

-

We see that using the compiled model is by a factor of 13.6 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:

+

+

We see that using the compiled model is by a factor of 13.8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:

rownames(smb.1) <- smb.1$expr
 smb.1["median"]/smb.1["deSolve, compiled", "median"]
##                          median
-## deSolve, not compiled 13.628133
-## Eigenvalue based       1.183044
+## deSolve, not compiled 13.750973
+## Eigenvalue based       1.207962
 ## deSolve, compiled      1.000000
@@ -285,18 +285,18 @@ smb.1["median"]/smb.1["deSolve, compiled", "median"
smb.2 <- summary(mb.2)
 print(mb.2)
## Unit: seconds
-##                   expr       min        lq      mean    median        uq
-##  deSolve, not compiled 53.993961 54.012379 54.225054 54.030797 54.340600
-##      deSolve, compiled  3.450737  3.535551  3.583034  3.620364  3.649183
+##                   expr       min        lq      mean   median        uq
+##  deSolve, not compiled 54.725198 54.787875 54.893809 54.85055 54.978114
+##      deSolve, compiled  3.618315  3.644838  3.670582  3.67136  3.696716
 ##        max neval cld
-##  54.650403     3   b
-##   3.678001     3  a
+## 55.105678 3 b +## 3.722071 3 a
smb.2["median"]/smb.2["deSolve, compiled", "median"]
##   median
 ## 1     NA
 ## 2     NA
autoplot(mb.2)
-

+

Here we get a performance benefit of a factor of 14.9 using the version of the differential equation model compiled from C code!

This vignette was built with mkin 0.9.43 on

## R version 3.3.1 (2016-06-21)
-- 
cgit v1.2.1