From 40b78bed232798ecbeb72759cdf8d400ea35b31f Mon Sep 17 00:00:00 2001
From: Johannes Ranke  Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany During the preparation of the journal article on nonlinear mixed-effects models in degradation kinetics (submitted) and the analysis of the dimethenamid degradation data analysed therein, a need for a more detailed analysis using not only nlme and saemix, but also nlmixr for fitting the mixed-effects models was identified. During the preparation of the journal article on nonlinear mixed-effects models in degradation kinetics (Ranke et al. 2021) and the analysis of the dimethenamid degradation data analysed therein, a need for a more detailed analysis using not only nlme and saemix, but also nlmixr for fitting the mixed-effects models was identified. This vignette is an attempt to satisfy this need. Residue data forming the basis for the endpoints derived in the conclusion on the peer review of the pesticide risk assessment of dimethenamid-P published by the European Food Safety Authority (EFSA) in 2018 (EFSA 2018) were transcribed from the risk assessment report (Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria 2018) which can be downloaded from the EFSA register of questions. Residue data forming the basis for the endpoints derived in the conclusion on the peer review of the pesticide risk assessment of dimethenamid-P published by the European Food Safety Authority (EFSA) in 2018 (EFSA 2018) were transcribed from the risk assessment report (Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria 2018) which can be downloaded from the Open EFSA repository https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716. The data are available in the mkin package. The following code (hidden by default, please use the button to the right to show it) treats the data available for the racemic mixture dimethenamid (DMTA) and its enantiomer dimethenamid-P (DMTAP) in the same way, as no difference between their degradation behaviour was identified in the EU risk assessment. The observation times of each dataset are multiplied with the corresponding normalisation factor also available in the dataset, in order to make it possible to describe all datasets with a single set of parameters. Also, datasets observed in the same soil are merged, resulting in dimethenamid (DMTA) data from six soils. The plot of the individual SFO fits shown below suggests that at least in some datasets the degradation slows down towards later time points, and that the scatter of the residuals error is smaller for smaller values (panel to the right): Using biexponential decline (DFOP) results in a slightly more random scatter of the residuals: The population curve (bold line) in the above plot results from taking the mean of the individual transformed parameters, i.e. of log k1 and log k2, as well as of the logit of the g parameter of the DFOP model). Here, this procedure does not result in parameters that represent the degradation well, because in some datasets the fitted value for k2 is extremely close to zero, leading to a log k2 value that dominates the average. This is alleviated if only rate constants that pass the t-test for significant difference from zero (on the untransformed scale) are considered in the averaging: While this is visually much more satisfactory, such an average procedure could introduce a bias, as not all results from the individual fits enter the population curve with the same weight. This is where nonlinear mixed-effects models can help out by treating all datasets with equally by fitting a parameter distribution model together with the degradation model and the error model (see below). The remaining trend of the residuals to be higher for higher predicted residues is reduced by using the two-component error model: The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We use would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. However, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data. The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. However, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data. Note that overparameterisation is also indicated by warnings obtained when fitting SFO or DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in some iterations). In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below. Note that a certain degree of overparameterisation is also indicated by a warning obtained when fitting DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in iteration 3). However, as this warning does not occur in later iterations, and specifically not in the last of the 6 iterations, we can ignore this warning. The model comparison function of the nlme package can directly be applied to these fits showing a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant. as the p-value is below 0.0001. The model comparison function of the nlme package can directly be applied to these fits showing a similar goodness-of-fit of the SFO model, but a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant. as the p-value is below 0.0001. In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below. While the SFO variants converge fast, the additional parameters introduced by this lead to convergence warnings for the DFOP model. The model comparison clearly show that adding correlations between random effects does not improve the fits. The selected model (DFOP with two-component error) fitted to the data assuming no correlations between random effects is shown below. The saemix package provided the first Open Source implementation of the Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. SAEM fits of degradation models can be performed using an interface to the saemix package available in current development versions of the mkin package. The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit. The convergence plot for the SFO model using constant variance is shown below. The saemix package provided the first Open Source implementation of the Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. SAEM fits of degradation models can be conveniently performed using an interface to the saemix package available in current development versions of the mkin package. The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit. As we will compare the SAEM implementation of saemix to the results obtained using the nlmixr package later, we define control settings that work well for all the parent data fits shown in this vignette. The convergence plot for the SFO model using constant variance is shown below. Obviously the default number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model. When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous (see the failure of nlme with the default number of iterations above). Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.  The same applies to the case where the DFOP model is fitted with the two-component error model. Convergence of the variance of k2 is enhanced by using the two-component error, it remains more or less stable already after 200 iterations of the first phase.  The four combinations can be compared using the model comparison function from the saemix package: The same applies in the case where the DFOP model is fitted with the two-component error model. Convergence of the variance of k2 is enhanced by using the two-component error, it remains more or less stable already after 200 iterations of the first phase.  As in the case of nlme fits, the DFOP model fitted with two-component error (number 4) gives the lowest AIC. The numeric values are reasonably close to the ones obtained using nlme, considering that the algorithms for fitting the model and for the likelihood calculation are quite different. As in the case of nlme fits, the DFOP model fitted with two-component error (number 4) gives the lowest AIC. Using more iterations and/or more chains does not have a large influence on the final AIC (not shown). In order to check the influence of the likelihood calculation algorithms implemented in saemix, the likelihood from Gaussian quadrature is added to the best fit, and the AIC values obtained from the three methods are compared. The AIC values based on importance sampling and Gaussian quadrature are quite similar. Using linearisation is less accurate, but still gives a similar value. The AIC values based on importance sampling and Gaussian quadrature are very similar. Using linearisation is known to be less accurate, but still gives a similar value. In the last years, a lot of effort has been put into the nlmixr package which is designed for pharmacokinetics, where nonlinear mixed-effects models are routinely used, but which can also be used for related data like chemical degradation data. A current development branch of the mkin package provides an interface between mkin and nlmixr. Here, we check if we get equivalent results when using a refined version of the First Order Conditional Estimation (FOCE) algorithm used in nlme, namely First Order Conditional Estimation with Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr. First, the focei algorithm is used for the four model combinations and the goodness of fit of the results is compared. In the last years, a lot of effort has been put into the nlmixr package which is designed for pharmacokinetics, where nonlinear mixed-effects models are routinely used, but which can also be used for related data like chemical degradation data. A current development branch of the mkin package provides an interface between mkin and nlmixr. Here, we check if we get equivalent results when using a refined version of the First Order Conditional Estimation (FOCE) algorithm used in nlme, namely the First Order Conditional Estimation with Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr. First, the focei algorithm is used for the four model combinations. A number of warnings are produced with unclear significance. The AIC values are very close to the ones obtained with nlme which are repeated below for convenience. Secondly, we use the SAEM estimation routine and check the convergence plots for SFO with constant variance Secondly, we use the SAEM estimation routine and check the convergence plots. The control parameters also used for the saemix fits are defined beforehand. The we fit SFO with constant variance  for SFO with two-component error and SFO with two-component error.  For DFOP with constant variance, the convergence plots show considerable instability of the fit, which can be alleviated by increasing the number of iterations and the number of parallel chains for the first phase of algorithm. For DFOP with constant variance, the convergence plots show considerable instability of the fit, which indicates overparameterisation which was already observed earlier for this model combination.  For DFOP with two-component error, the same increase in iterations and parallel chains was used, but using the two-component error appears to lead to a less erratic convergence, so this may not be necessary to this degree. For DFOP with two-component error, a less erratic convergence is seen.  The AIC values are internally calculated using Gaussian quadrature. For an unknown reason, the AIC value obtained for the DFOP fit using the two-component error model is given as Infinity. The AIC values are internally calculated using Gaussian quadrature. For an unknown reason, the AIC value obtained for the DFOP fit using constant error is given as Infinity. The following table gives the AIC values obtained with the three packages. EFSA. 2018. “Peer Review of the Pesticide Risk Assessment of the Active Substance Dimethenamid-P.” EFSA Journal 16 (4): 5211. Ranke, Johannes, Janina Wöltjen, Jana Schmidt, and Emmanuelle Comets. 2021. “Taking Kinetic Evaluations of Degradation Data to the Next Level with Nonlinear Mixed-Effects Models.” Environments 8 (8). https://doi.org/10.3390/environments8080071. Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria. 2018. “Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - November 2017.” https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716. An mkindsg object grouping eight datasets with some meta information An mkindsg object grouping seven datasets with some meta information Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
@@ -177,42 +177,36 @@ specific pieces of information in the comments.Example evaluations of the dimethenamid data from 2018
                         Johannes Ranke
             
-            Last change 4 August 2021, built on 04 Aug 2021
+            Last change 16 September 2021, built on 16 Sep 2021
       
       Source: vignettes/web_only/dimethenamid_2018.rmd
       dimethenamid_2018.rmd
Privatdozent at the University of Bremen
 Introduction
-
 Data
-
 
library(mkin)
-dmta_ds <- lapply(1:8, function(i) {
+dmta_ds <- lapply(1:7, function(i) {
   ds_i <- dimethenamid_2018$ds[[i]]$data
   ds_i[ds_i$name == "DMTAP", "name"] <-  "DMTA"
   ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
   ds_i
 })
 names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
-dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
-dmta_ds[["Borstel 1"]] <- NULL
-dmta_ds[["Borstel 2"]] <- NULL
 dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
 dmta_ds[["Elliot 1"]] <- NULL
 dmta_ds[["Elliot 2"]] <- NULLplot(mixed(f_parent_mkin_const["SFO", ]))
plot(mixed(f_parent_mkin_const["DFOP", ]))
plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE)
plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE)
 nlme
-
 
library(nlme)
 f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
-#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ])
-# maxIter = 50 reached
+# f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ])
 f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
 f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
-
f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
-  random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
-anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
-#f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
-#  random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
-# using log Cholesky parameterisation for random effects (nlme default) does
-# not converge here and gives lots of warnings about the LME step not converging
 
anova(
   f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
 )
+f_parent_nlme_sfo_const     1  5 796.60 811.82 -393.30                       
+f_parent_nlme_sfo_tc        2  6 798.60 816.86 -393.30 1 vs 2    0.00   0.998
+f_parent_nlme_dfop_tc       3 10 671.91 702.34 -325.96 2 vs 3  134.69  <.0001
+                        Model df    AIC    BIC  logLik   Test L.Ratio p-value
-f_parent_nlme_sfo_const     1  5 818.63 834.00 -404.31                       
-f_parent_nlme_sfo_tc        2  6 820.61 839.06 -404.31 1 vs 2   0.014  0.9049
-f_parent_nlme_dfop_tc       3 10 687.84 718.59 -333.92 2 vs 3 140.771  <.0001
+
f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
+  random = nlme::pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol)
+f_parent_nlme_sfo_tc_logchol <- nlme(f_parent_mkin_tc["SFO", ],
+  random = nlme::pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+anova(f_parent_nlme_sfo_tc, f_parent_nlme_sfo_tc_logchol)
+f_parent_nlme_dfop_tc_logchol <- nlme(f_parent_mkin_const["DFOP", ],
+  random = nlme::pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+anova(f_parent_nlme_dfop_tc, f_parent_nlme_dfop_tc_logchol)
-
plot(f_parent_nlme_dfop_tc)plot(f_parent_nlme_dfop_tc)
 saemix
-
 
library(saemix)
-f_parent_saemix_sfo_const <- mkin::saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
-  transformations = "saemix")
+saemix_control <- saemixControl(nbiter.saemix = c(800, 300), nb.chains = 15,
+    print = FALSE, save = FALSE, save.graphs = FALSE, displayProgress = FALSE)
+
f_parent_saemix_sfo_const <- mkin::saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+  control = saemix_control, transformations = "saemix")
 plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")
+
+
 
f_parent_saemix_sfo_tc <- mkin::saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
-  transformations = "saemix")
+  control = saemix_control, transformations = "saemix")
 plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")
+
 
f_parent_saemix_dfop_const <- mkin::saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
-  control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
-    save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
-  transformations = "saemix")
+  control = saemix_control, transformations = "saemix")
 plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")
-
f_parent_saemix_dfop_tc_moreiter <- mkin::saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
-  control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
-    save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
-  transformations = "saemix")
-plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence")
-
compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
-  f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so)f_parent_saemix_dfop_tc <- mkin::saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+  control = saemix_control, transformations = "saemix")
+plot(f_parent_saemix_dfop_tc$so, plot.type = "convergence")
 The four combinations and including the variations of the DFOP/tc combination can be compared using the model comparison function from the saemix package:
+
compare.saemix(
+  f_parent_saemix_sfo_const$so,
+  f_parent_saemix_sfo_tc$so,
+  f_parent_saemix_dfop_const$so,
+  f_parent_saemix_dfop_tc$so)Likelihoods calculated by importance sampling
-     AIC    BIC
-1 818.37 817.33
-2 820.38 819.14
-3 725.91 724.04
-4 683.64 681.55
-
f_parent_saemix_dfop_tc_moreiter$so <-
-  llgq.saemix(f_parent_saemix_dfop_tc_moreiter$so)
-AIC(f_parent_saemix_dfop_tc_moreiter$so)
-[1] 683.64
-
AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "gq")
-[1] 683.7
-
AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "lin")
-[1] 683.17
+
f_parent_saemix_dfop_tc$so <-
+  llgq.saemix(f_parent_saemix_dfop_tc$so)
+AIC(f_parent_saemix_dfop_tc$so)
+[1] 666.1
+
AIC(f_parent_saemix_dfop_tc$so, method = "gq")
+[1] 666.03
+
AIC(f_parent_saemix_dfop_tc$so, method = "lin")
+[1] 665.48
 nlmixr
-
+
 
 
library(nlmixr)
 f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
 f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
 f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
 f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei")
-
AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
-  f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm)
+                                    df    AIC
-f_parent_nlmixr_focei_sfo_const$nm   5 818.63
-f_parent_nlmixr_focei_sfo_tc$nm      6 820.61
-f_parent_nlmixr_focei_dfop_const$nm  9 728.11
-f_parent_nlmixr_focei_dfop_tc$nm    10 687.82
+
aic_nlmixr_focei <- sapply(
+  list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+    f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm),
+  AIC)
-
AIC(
-  f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+aic_nlme <- sapply(
+  list(f_parent_nlme_sfo_const, NA, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc),
+  function(x) if (is.na(x[1])) NA else AIC(x))
+aic_nlme_nlmixr_focei <- data.frame(
+  "Degradation model" = c("SFO", "SFO", "DFOP", "DFOP"),
+  "Error model" = rep(c("constant variance", "two-component"), 2),
+  "AIC (nlme)" = aic_nlme,
+  "AIC (nlmixr with FOCEI)" = aic_nlmixr_focei,
+  check.names = FALSE
 )
-                        df    AIC
-f_parent_nlme_sfo_const  5 818.63
-f_parent_nlme_sfo_tc     6 820.61
-f_parent_nlme_dfop_tc   10 687.84
+
nlmixr_saem_control <- saemControl(logLik = TRUE,
+  nBurn = 1000, nEm = 300, nmc = 15)
 
f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem",
-  control = nlmixr::saemControl(logLik = TRUE))
+  control = nlmixr_saem_control)
 traceplot(f_parent_nlmixr_saem_sfo_const$nm)
 
f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
-  control = nlmixr::saemControl(logLik = TRUE))
+  control = nlmixr_saem_control)
 traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
 
f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
-  control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
+  control = nlmixr_saem_control)
 traceplot(f_parent_nlmixr_saem_dfop_const$nm)
 
f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
-  control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
+  control = nlmixr_saem_control)
 traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
 
AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
   f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm)
+f_parent_nlmixr_saem_sfo_const$nm   5 798.68
+f_parent_nlmixr_saem_sfo_tc$nm      6 808.88
+f_parent_nlmixr_saem_dfop_const$nm  9 815.95
+f_parent_nlmixr_saem_dfop_tc$nm    10 669.57                                   df    AIC
-f_parent_nlmixr_saem_sfo_const$nm   5 820.54
-f_parent_nlmixr_saem_sfo_tc$nm      6 835.26
-f_parent_nlmixr_saem_dfop_const$nm  9 842.84
-f_parent_nlmixr_saem_dfop_tc$nm    10 684.51
 
AIC_all <- data.frame(
+  check.names = FALSE,
   "Degradation model" = c("SFO", "SFO", "DFOP", "DFOP"),
   "Error model" = c("const", "tc", "const", "tc"),
   nlme = c(AIC(f_parent_nlme_sfo_const), AIC(f_parent_nlme_sfo_tc), NA, AIC(f_parent_nlme_dfop_tc)),
   nlmixr_focei = sapply(list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
   f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm), AIC),
   saemix = sapply(list(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
-    f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so), AIC),
+    f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc$so), AIC),
   nlmixr_saem = sapply(list(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
   f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm), AIC)
 )
 kable(AIC_all)
 
@@ -397,6 +403,9 @@ f_parent_nlmixr_saem_dfop_tc$nm    10 684.51
 
- Degradation.model 
-Error.model 
+Degradation model 
+Error model 
 nlme 
 nlmixr_focei 
 saemix 
@@ -355,34 +361,34 @@ f_parent_nlmixr_saem_dfop_tc$nm    10 684.51
 
  
 SFO 
 const 
-818.63 
-818.63 
-818.37 
-820.54 
+796.60 
+796.62 
+796.37 
+798.68 
 
  
 SFO 
 tc 
-820.61 
-820.61 
-820.38 
-835.26 
+798.60 
+798.61 
+798.37 
+808.88 
 
  
 DFOP 
 const 
 NA 
-728.11 
-725.91 
-842.84 
+750.91 
+713.16 
+815.95 
 
  
 
 DFOP 
 tc 
-687.84 
-687.82 
-683.64 
-684.51 
+671.91 
+666.60 
+666.10 
+669.57 
 Dev status
 
 NEWS.md
     
 
-    
-mkin 1.0.5 (unreleased)
+    
+    
+mkin 1.0.5 (2021-09-15)
+
+
 
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index f184b7a5..e932afd0 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -11,7 +11,7 @@ articles:
   web_only/benchmarks: benchmarks.html
   web_only/compiled_models: compiled_models.html
   web_only/dimethenamid_2018: dimethenamid_2018.html
-last_built: 2021-08-04T13:49Z
+last_built: 2021-09-16T15:10Z
 urls:
   reference: https://pkgdown.jrwb.de/mkin/reference
   article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/dimethenamid_2018-1.png b/docs/dev/reference/dimethenamid_2018-1.png
index 52b8a2be..b8c5355f 100644
Binary files a/docs/dev/reference/dimethenamid_2018-1.png and b/docs/dev/reference/dimethenamid_2018-1.png differ
diff --git a/docs/dev/reference/dimethenamid_2018-2.png b/docs/dev/reference/dimethenamid_2018-2.png
index a81b2aaf..3b8a123b 100644
Binary files a/docs/dev/reference/dimethenamid_2018-2.png and b/docs/dev/reference/dimethenamid_2018-2.png differ
diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html
index a77cf0f4..919e9363 100644
--- a/docs/dev/reference/dimethenamid_2018.html
+++ b/docs/dev/reference/dimethenamid_2018.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
       
       
     
Format
 
-    Source
 
     Examples
     

nlme.m
 #>   Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink) 
 #>   Data: grouped_data 
 #>        AIC      BIC    logLik
-#>   300.6824 310.2426 -145.3412
+#>   289.8295 299.4886 -139.9148
 #> 
 #> Random effects:
 #>  Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
 #>  Level: ds
 #>  Structure: Diagonal
 #>         parent_0 log_k_parent_sink Residual
-#> StdDev: 1.697361         0.6801209 3.666073
+#> StdDev: 1.839278         0.6988919 3.059894
 #> 
 #> Fixed effects:  parent_0 + log_k_parent_sink ~ 1 
 #>                       Value Std.Error DF  t-value p-value
-#> parent_0          100.99378 1.3890416 46 72.70753       0
-#> log_k_parent_sink  -3.07521 0.4018589 46 -7.65246       0
+#> parent_0          100.52780 1.3507449 47 74.42397       0
+#> log_k_parent_sink  -3.08477 0.4124053 47 -7.47995       0
 #>  Correlation: 
 #>                   prnt_0
-#> log_k_parent_sink 0.027 
+#> log_k_parent_sink 0.019 
 #> 
 #> Standardized Within-Group Residuals:
-#>        Min         Q1        Med         Q3        Max 
-#> -1.9942823 -0.5622565  0.1791579  0.7165038  2.0704781 
+#>         Min          Q1         Med          Q3         Max 
+#> -2.22350411 -0.51546184  0.04803417  0.55987705  3.49178405 
 #> 
-#> Number of Observations: 50
+#> Number of Observations: 51
 #> Number of Groups: 3 
# augPred does not work on fits with more than one state
 # variable
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index db863392..866091ca 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />
       
       
     
 
diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html
index 99a7ad14..db114483 100644
--- a/docs/dev/reference/nlmixr.mmkin.html
+++ b/docs/dev/reference/nlmixr.mmkin.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
       
       
     
 
@@ -4416,7 +4416,8 @@ obtained by fitting the same model to a list of datasets using      288.66432 |     94.40 |    0.8038 |     7.793 |     2.283 |
 #> |.....................| 5.960e-07 |    0.6941 |     1.222 |     1.493 |
-#> done#> #> #> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: parameter estimate near boundary; covariance not calculated
+#> done#> #> #> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: parameter estimate near boundary; covariance not calculated:
+#>    "rsd_high" 
 #>  use 'getVarCov' to calculate anyway#> Warning: gradient problems with initial estimate; see $scaleInfo
 AIC(
   f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm,
@@ -4501,7 +4502,7 @@ obtained by fitting the same model to a list of datasets using k_A1=rx_expr_11;
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
 #> 
@@ -4550,7 +4551,7 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
 #> 
@@ -4607,10 +4608,10 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
+#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
 # Variance by variable is supported by 'saem' and 'focei'
 f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
-#> #> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> #> #> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
 #> 
@@ -4659,8 +4660,8 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
 #> 
@@ -4717,7 +4718,7 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
+#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
 # Identical two-component error for all variables is only possible with
 # est = 'focei' in nlmixr
 f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
@@ -4771,7 +4772,7 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
 #> 
@@ -4830,12 +4831,12 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
+#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
 # Two-component error by variable is possible with both estimation methods
 # Variance by variable is supported by 'saem' and 'focei'
 f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
   error_model = "obs_tc")
-#> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
   error_model = "obs_tc")
 #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
@@ -4887,9 +4888,9 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
   error_model = "obs_tc")
-#> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
   error_model = "obs_tc")
 #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
@@ -4949,7 +4950,7 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
+#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> 
 AIC(
   f_nlmixr_sfo_sfo_focei_const$nm,
   f_nlmixr_fomc_sfo_focei_const$nm,
diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html
index 746a8640..9f0eb965 100644
--- a/docs/dev/reference/plot.mixed.mmkin.html
+++ b/docs/dev/reference/plot.mixed.mmkin.html
@@ -72,7 +72,7 @@
       
       
     
 
@@ -296,10 +296,10 @@ corresponding model prediction lines for the different datasets.
 
#> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:21:52 2021"
+#> [1] "Thu Sep 16 14:34:31 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:00 2021"
 f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
 f_nlmix <- nlmix(f_obs)
diff --git a/docs/dev/reference/reexports.html b/docs/dev/reference/reexports.html
index f5ace044..ac4fa4d9 100644
--- a/docs/dev/reference/reexports.html
+++ b/docs/dev/reference/reexports.html
@@ -81,7 +81,7 @@ below to see their documentation.
       
       
     
 
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index 620173b2..8d986126 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
       
       
     
 
@@ -288,27 +288,27 @@ using mmkin.
   state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
 f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
 #> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:05 2021"
+#> [1] "Thu Sep 16 14:34:42 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:06 2021"
+#> [1] "Thu Sep 16 14:34:43 2021"
 f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
 f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
 #> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:08 2021"
+#> [1] "Thu Sep 16 14:34:45 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:10 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Thu Sep 16 14:34:47 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
 #> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:10 2021"
+#> [1] "Thu Sep 16 14:34:47 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:12 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Thu Sep 16 14:34:49 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
 #> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:12 2021"
+#> [1] "Thu Sep 16 14:34:49 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:16 2021"
+#> [1] "Thu Sep 16 14:34:52 2021"
 # The returned saem.mmkin object contains an SaemixObject, therefore we can use
 # functions from saemix
 library(saemix)
@@ -357,10 +357,10 @@ using mmkin.
 f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
 f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
 #> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:19 2021"
+#> [1] "Thu Sep 16 14:34:55 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:24 2021"#> #>        AIC      BIC
 #> 1 467.7096 464.9757
 #> 2 469.6831 466.5586#> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:27 2021"
+#> [1] "Thu Sep 16 14:35:03 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:32 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+#> [1] "Thu Sep 16 14:35:08 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
 #> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:33 2021"
+#> [1] "Thu Sep 16 14:35:08 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:42 2021"# We can use print, plot and summary methods to check the results
+#> [1] "Thu Sep 16 14:35:17 2021"#> Kinetic nonlinear mixed-effects model fit by SAEM
 #> Structural model:
@@ -430,10 +430,10 @@ using mmkin.
 #> SD.g_qlogis          0.44816 -1.25437  2.1507
#> saemix version used for fitting:      3.1.9000 
-#> mkin version used for pre-fitting:  1.0.5 
-#> R version used for fitting:         4.1.0 
-#> Date of fit:     Wed Aug  4 16:22:43 2021 
-#> Date of summary: Wed Aug  4 16:22:43 2021 
+#> mkin version used for pre-fitting:  1.1.0 
+#> R version used for fitting:         4.1.1 
+#> Date of fit:     Thu Sep 16 14:35:18 2021 
+#> Date of summary: Thu Sep 16 14:35:18 2021 
 #> 
 #> Equations:
 #> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -448,7 +448,7 @@ using mmkin.
 #> 
 #> Model predictions using solution type analytical 
 #> 
-#> Fitted in 10.143 s using 300, 100 iterations
+#> Fitted in 9.349 s using 300, 100 iterations
 #> 
 #> Variance model: Constant variance 
 #> 
diff --git a/docs/dev/reference/summary.nlmixr.mmkin.html b/docs/dev/reference/summary.nlmixr.mmkin.html
index 70a71683..4831bbdf 100644
--- a/docs/dev/reference/summary.nlmixr.mmkin.html
+++ b/docs/dev/reference/summary.nlmixr.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
       
       
     
 
@@ -258,12 +258,12 @@ nlmixr authors for the parts inherited from nlmixr.
   quiet = TRUE, error_model = "tc", cores = 5)
 f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo)
 #> Running main SAEM algorithm
-#> [1] "Wed Aug  4 16:22:46 2021"
+#> [1] "Thu Sep 16 14:35:21 2021"
 #> ....
 #>     Minimisation finished
-#> [1] "Wed Aug  4 16:22:59 2021"#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)#> Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)#> #> #> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_m1#> # The following takes a very long time but gives
+#> #> #> #> #> #> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_m1#> # The following takes a very long time but gives
 f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
 #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> #> 
 #> 
@@ -323,7 +323,7 @@ nlmixr authors for the parts inherited from nlmixr.
 #> 
 #> 
 #> 
-#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> #> #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt <- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control <- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret <- new.env(parent = emptyenv())    }    else {        .ret <- env    }    .ret$origData <- data    .ret$etaNames <- etaNames    .ret$thetaFixed <- fixed    .ret$control <- control    .ret$control$focei.mu.ref <- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel <- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel <- TRUE        model <- RxODE::rxGetLin(PKpars)        pred <- eval(parse(text = "function(){return(Central);}"))    }    .square <- function(x) x * x    .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames <- .parNames <- c()    .ret$adjLik <- control$adjLik    .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0    if (!exists("noLik", envir = .ret)) {        .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol <- .atol            .ret$control$rxControl$rtol <- .rtol            .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol <- .ssAtol            .ret$control$rxControl$ssRtol <- .ssRtol        }        .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)        .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) <- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) > 0) {            .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) > 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars <- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model <- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol <- .atol                .ret$control$rxControl$rtol <- .rtol            }            .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)            .covNames <- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) <- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) > 0) {                .covNames <- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) > 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars <- .ret$model$extra.pars        }        else {            .extraPars <- NULL        }    }    .ret$skipCov <- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp <- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) < length(inits$THTA)) {                .tmp <- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp <- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr <- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp <- (.tmp | .uifErr)        }        .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms <- thetaNames    }    .ret$thetaNames <- .nms    .thetaReset$thetaNames <- .nms    if (length(lower) == 1) {        lower <- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper <- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars <- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) > 0) {            inits$THTA <- c(inits$THTA, .ret$model$extra.pars)            .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr <- rep(Inf, length(.ret$model$extra.pars))            lower <- c(lower, .lowerErr)            upper <- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID <- 0    if (is.null(data$AMT))         data$AMT <- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] <- as.double(data[[.v]])    }    .ret$dataSav <- data    .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w <- which(tolower(names(data)) == "limit")    .limitName <- NULL    if (length(.w) == 1L) {        .limitName <- names(data)[.w]    }    .censName <- NULL    .w <- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName <- names(data[.w])    }    data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh <- .parseOM(inits$OMGA)        .nlh <- sapply(.lh, length)        .osplt <- rep(1:length(.lh), .nlh)        .lini <- list(inits$THTA, unlist(.lh))        .nlini <- sapply(.lini, length)        .nsplt <- rep(1:length(.lini), .nlini)        .om0 <- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames <- .ret$etaNames        }        else {            .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType <- .ret$rxInv$xType        .om0a <- .om0        .om0a <- .om0a/control$diagOmegaBoundLower        .om0b <- .om0        .om0b <- .om0b * control$diagOmegaBoundUpper        .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower <- with(.omdf, ifelse(a > b, b, a))        .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper <- with(.omdf, ifelse(a < b, b, a))        .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega <- length(.omdf$lower)        .ret$control$neta <- sum(.omdf$diag)        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)        lower <- c(lower, .omdf$lower)        upper <- c(upper, .omdf$upper)    }    else {        .ret$control$nomega <- 0        .ret$control$neta <- 0        .ret$xType <- -1        .ret$control$ntheta <- length(lower)        .ret$control$nfixed <- sum(fixed)    }    .ret$lower <- lower    .ret$upper <- upper    .ret$thetaIni <- inits$THTA    .scaleC <- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC <- rep(NA_real_, length(lower))    }    else {        .scaleC <- as.double(control$scaleC)        if (length(lower) > length(.scaleC)) {            .scaleC <- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) < length(.scaleC)) {            .scaleC <- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC <- .scaleC    if (exists("uif", envir = .ret)) {        .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- 1        }        .ini <- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b <- .ret$logitThetasLow[.i]            .c <- .ret$logitThetasHi[.i]            .a <- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) & !is.null(control$etaMat)) {        .ret$etaMat <- control$etaMat    }    else {        .ret$etaMat <- etaMat    }    .ret$setupTime <- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp <- .ret$uif$logThetasList        .ret$logThetas <- .tmp[[1]]        .ret$logThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasList        .ret$logitThetas <- .tmp[[1]]        .ret$logitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListLow        .ret$logitThetasLow <- .tmp[[1]]        .ret$logitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$logitThetasListHi        .ret$logitThetasHi <- .tmp[[1]]        .ret$logitThetasHiF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasList        .ret$probitThetas <- .tmp[[1]]        .ret$probitThetasF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListLow        .ret$probitThetasLow <- .tmp[[1]]        .ret$probitThetasLowF <- .tmp[[2]]        .tmp <- .ret$uif$probitThetasListHi        .ret$probitThetasHi <- .tmp[[1]]        .ret$probitThetasHiF <- .tmp[[2]]    }    else {        .ret$logThetasF <- integer(0)        .ret$logitThetasF <- integer(0)        .ret$logitThetasHiF <- numeric(0)        .ret$logitThetasLowF <- numeric(0)        .ret$logitThetas <- integer(0)        .ret$logitThetasHi <- numeric(0)        .ret$logitThetasLow <- numeric(0)        .ret$probitThetasF <- integer(0)        .ret$probitThetasHiF <- numeric(0)        .ret$probitThetasLowF <- numeric(0)        .ret$probitThetas <- integer(0)        .ret$probitThetasHi <- numeric(0)        .ret$probitThetasLow <- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan <- length(.ret$thetaIni)            .ret$nobs <- sum(data$EVID == 0)        }    }    .ret$control$printTop <- TRUE    .ret$control$nF <- 0    .est0 <- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq <- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq <- 0L    }    .fitFun <- function(.ret) {        this.env <- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 <- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm <- names(.ret$thetaIni)                .ret$thetaIni <- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta <- .thetaReset$omegaTheta                .ret$control$printTop <- FALSE                .ret$etaMat <- .thetaReset$etaMat                .ret$control$etaMat <- .thetaReset$etaMat                .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations                .ret$control$nF <- .thetaReset$nF                .ret$control$gillRetC <- .thetaReset$gillRetC                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillRet <- .thetaReset$gillRet                .ret$control$gillDf <- .thetaReset$gillDf                .ret$control$gillDf2 <- .thetaReset$gillDf2                .ret$control$gillErr <- .thetaReset$gillErr                .ret$control$rEps <- .thetaReset$rEps                .ret$control$aEps <- .thetaReset$aEps                .ret$control$rEpsC <- .thetaReset$rEpsC                .ret$control$aEpsC <- .thetaReset$aEpsC                .ret$control$c1 <- .thetaReset$c1                .ret$control$c2 <- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations <- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun <- .bobyqa                  .ret$control$outerOpt <- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 <- try(.fitFun(.ret))    .n <- 1    while (inherits(.ret0, "try-error") && control$maxOuterIterations !=         0 && .n <= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF <- 0        .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew <- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] < lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] > upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni <- .estNew        .ret0 <- try(.fitFun(.ret))        .n <- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret <- .ret0    if (exists("parHistData", .ret)) {        .tmp <- .ret$parHistData        .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter <- .tmp$iter        .tmp <- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) <- c("val", "par", "iter")        .ret$parHist <- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas <- .ret$ranef        .thetas <- .ret$fixef        .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table <- tableControl()    }    if (control$calcTables) {        .ret <- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> #> Error in AIC(f_nlmixr_dfop_sfo_saem$nm, f_nlmixr_dfop_sfo_focei$nm): object 'f_nlmixr_dfop_sfo_saem' not found#> Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_nlmixr_dfop_sfo_sfo' not found# }
 
diff --git a/docs/dev/reference/tffm0.html b/docs/dev/reference/tffm0.html
index d993e8ff..67f26b85 100644
--- a/docs/dev/reference/tffm0.html
+++ b/docs/dev/reference/tffm0.html
@@ -81,7 +81,7 @@ from RxODE." />
       
       
     
 
diff --git a/test.log b/test.log
index 90719917..f68ec45a 100644
--- a/test.log
+++ b/test.log
@@ -3,7 +3,7 @@ Loading required package: parallel
 ℹ Testing mkin
 ✔ |  OK F W S | Context
 ✔ |   5       | AIC calculation
-✔ |   5       | Analytical solutions for coupled models [3.3 s]
+✔ |   5       | Analytical solutions for coupled models [3.4 s]
 ✔ |   5       | Calculation of Akaike weights
 ✔ |   2       | Export dataset for reading into CAKE
 ✔ |  12       | Confidence intervals and p-values [1.0 s]
@@ -13,7 +13,7 @@ Loading required package: parallel
 ✔ |  14       | Results for FOCUS D established in expertise for UBA (Ranke 2014) [0.8 s]
 ✔ |   4       | Test fitting the decline of metabolites from their maximum [0.3 s]
 ✔ |   1       | Fitting the logistic model [0.2 s]
-✔ |  35     1 | Nonlinear mixed-effects models [26.6 s]
+✔ |  35     1 | Nonlinear mixed-effects models [26.3 s]
 ────────────────────────────────────────────────────────────────────────────────
 Skip (test_mixed.R:161:3): saem results are reproducible for biphasic fits
 Reason: Fitting with saemix takes around 10 minutes when using deSolve
@@ -36,7 +36,7 @@ Reason: Fitting with saemix takes around 10 minutes when using deSolve
 ✔ |   4       | Calculation of maximum time weighted average concentrations (TWAs) [2.3 s]
 
 ══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 67.8 s
+Duration: 67.6 s
 
 ── Skipped tests  ──────────────────────────────────────────────────────────────
 • Fitting with saemix takes around 10 minutes when using deSolve (1)
diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html
index 0e983b98..ba514c18 100644
--- a/vignettes/FOCUS_D.html
+++ b/vignettes/FOCUS_D.html
@@ -360,7 +360,7 @@ pre code {
 
 Example evaluation of FOCUS Example Dataset D
 Johannes Ranke
-Last change 31 January 2019 (rebuilt 2021-09-15)
+Last change 31 January 2019 (rebuilt 2021-09-16)
 
 
 
@@ -434,10 +434,10 @@ print(FOCUS_2006_D)
 A comprehensive report of the results is obtained using the summary method for mkinfit objects.
summary(fit)
-## mkin version used for fitting:    1.0.5 
+## mkin version used for fitting:    1.1.0 
 ## R version used for fitting:       4.1.1 
-## Date of fit:     Wed Sep 15 17:39:28 2021 
-## Date of summary: Wed Sep 15 17:39:28 2021 
+## Date of fit:     Thu Sep 16 13:57:32 2021 
+## Date of summary: Thu Sep 16 13:57:33 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - k_parent * parent
@@ -445,7 +445,7 @@ print(FOCUS_2006_D)
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 401 model solutions performed in 0.143 s
+## Fitted using 401 model solutions performed in 0.149 s
 ## 
 ## Error model: Constant variance 
 ## 
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 717a01be..b6ebb606 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -27,11 +27,8 @@ document.addEventListener('DOMContentLoaded', function(e) {
   }
 });
 
-