From b9be19af5e3085216d0cd5af439332f631fa8b92 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 15 Feb 2021 17:36:12 +0100 Subject: Fully rebuild docs, rerun tests and check --- vignettes/FOCUS_D.html | 4 ++-- vignettes/FOCUS_L.html | 32 ++++++++++++++++---------------- vignettes/web_only/mkin_benchmarks.rda | Bin 1081 -> 1137 bytes 3 files changed, 18 insertions(+), 18 deletions(-) (limited to 'vignettes') diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index f1f078db..a158629a 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -463,8 +463,8 @@ print(FOCUS_2006_D)
summary(fit)
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:17 2021 
-## Date of summary: Mon Feb 15 14:11:17 2021 
+## Date of fit:     Mon Feb 15 17:29:02 2021 
+## Date of summary: Mon Feb 15 17:29:03 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - k_parent * parent
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 0ed46483..3d8e02c2 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -1561,8 +1561,8 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
summary(m.L1.SFO)
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:19 2021 
-## Date of summary: Mon Feb 15 14:11:19 2021 
+## Date of fit:     Mon Feb 15 17:29:04 2021 
+## Date of summary: Mon Feb 15 17:29:04 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - k_parent * parent
@@ -1662,15 +1662,15 @@ summary(m.L1.SFO)
## doubtful
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:19 2021 
-## Date of summary: Mon Feb 15 14:11:19 2021 
+## Date of fit:     Mon Feb 15 17:29:04 2021 
+## Date of summary: Mon Feb 15 17:29:04 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 369 model solutions performed in 0.082 s
+## Fitted using 369 model solutions performed in 0.083 s
 ## 
 ## Error model: Constant variance 
 ## 
@@ -1767,8 +1767,8 @@ plot(m.L2.FOMC, show_residuals = TRUE,
 
summary(m.L2.FOMC, data = FALSE)
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:19 2021 
-## Date of summary: Mon Feb 15 14:11:19 2021 
+## Date of fit:     Mon Feb 15 17:29:04 2021 
+## Date of summary: Mon Feb 15 17:29:04 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -1845,8 +1845,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
 
summary(m.L2.DFOP, data = FALSE)
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:20 2021 
-## Date of summary: Mon Feb 15 14:11:20 2021 
+## Date of fit:     Mon Feb 15 17:29:05 2021 
+## Date of summary: Mon Feb 15 17:29:05 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1945,8 +1945,8 @@ plot(mm.L3)
summary(mm.L3[["DFOP", 1]])
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:20 2021 
-## Date of summary: Mon Feb 15 14:11:20 2021 
+## Date of fit:     Mon Feb 15 17:29:05 2021 
+## Date of summary: Mon Feb 15 17:29:05 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -2053,8 +2053,8 @@ plot(mm.L4)
summary(mm.L4[["SFO", 1]], data = FALSE)
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:20 2021 
-## Date of summary: Mon Feb 15 14:11:20 2021 
+## Date of fit:     Mon Feb 15 17:29:05 2021 
+## Date of summary: Mon Feb 15 17:29:05 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - k_parent * parent
@@ -2117,15 +2117,15 @@ plot(mm.L4)
summary(mm.L4[["FOMC", 1]], data = FALSE)
## mkin version used for fitting:    1.0.3 
 ## R version used for fitting:       4.0.3 
-## Date of fit:     Mon Feb 15 14:11:20 2021 
-## Date of summary: Mon Feb 15 14:11:20 2021 
+## Date of fit:     Mon Feb 15 17:29:05 2021 
+## Date of summary: Mon Feb 15 17:29:05 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 224 model solutions performed in 0.046 s
+## Fitted using 224 model solutions performed in 0.047 s
 ## 
 ## Error model: Constant variance 
 ## 
diff --git a/vignettes/web_only/mkin_benchmarks.rda b/vignettes/web_only/mkin_benchmarks.rda
index d2b82805..8c3369a2 100644
Binary files a/vignettes/web_only/mkin_benchmarks.rda and b/vignettes/web_only/mkin_benchmarks.rda differ
-- 
cgit v1.2.1


From 40b78bed232798ecbeb72759cdf8d400ea35b31f Mon Sep 17 00:00:00 2001
From: Johannes Ranke 
Date: Fri, 23 Jul 2021 13:55:34 +0200
Subject: Some example evaluations of dimethenamid data

Evaluations with nlme, saemix and nlmixr are included
---
 vignettes/references.bib                           |   23 +-
 vignettes/web_only/.build.timestamp                |    0
 vignettes/web_only/dimethenamid_2018.R             |   66 +
 vignettes/web_only/dimethenamid_2018.html          | 1864 ++++++++++++++++++++
 vignettes/web_only/dimethenamid_2018.rmd           |  374 ++++
 .../figure-html/f_parent_mkin_dfop_const-1.png     |  Bin 0 -> 60693 bytes
 .../f_parent_mkin_dfop_const_test-1.png            |  Bin 0 -> 60929 bytes
 .../figure-html/f_parent_mkin_dfop_tc_test-1.png   |  Bin 0 -> 62234 bytes
 .../figure-html/f_parent_mkin_sfo_const-1.png      |  Bin 0 -> 58445 bytes
 .../f_parent_nlmixr_saem_dfop_const-1.png          |  Bin 0 -> 92167 bytes
 .../figure-html/f_parent_nlmixr_saem_dfop_tc-1.png |  Bin 0 -> 76934 bytes
 .../f_parent_nlmixr_saem_sfo_const-1.png           |  Bin 0 -> 62426 bytes
 .../figure-html/f_parent_nlmixr_saem_sfo_tc-1.png  |  Bin 0 -> 70230 bytes
 .../figure-html/f_parent_saemix_dfop_const-1.png   |  Bin 0 -> 41208 bytes
 .../f_parent_saemix_dfop_const_moreiter-1.png      |  Bin 0 -> 39456 bytes
 .../figure-html/f_parent_saemix_dfop_tc-1.png      |  Bin 0 -> 31646 bytes
 .../f_parent_saemix_dfop_tc_moreiter-1.png         |  Bin 0 -> 32077 bytes
 .../figure-html/f_parent_saemix_sfo_const-1.png    |  Bin 0 -> 35758 bytes
 .../figure-html/f_parent_saemix_sfo_tc-1.png       |  Bin 0 -> 30708 bytes
 .../f_parent_saemix_sfo_tc_moreiter-1.png          |  Bin 0 -> 30416 bytes
 .../figure-html/plot_parent_nlme-1.png             |  Bin 0 -> 60491 bytes
 21 files changed, 2323 insertions(+), 4 deletions(-)
 create mode 100644 vignettes/web_only/.build.timestamp
 create mode 100644 vignettes/web_only/dimethenamid_2018.R
 create mode 100644 vignettes/web_only/dimethenamid_2018.html
 create mode 100644 vignettes/web_only/dimethenamid_2018.rmd
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png
 create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png

(limited to 'vignettes')

diff --git a/vignettes/references.bib b/vignettes/references.bib
index 18b93fd3..f7eb4692 100644
--- a/vignettes/references.bib
+++ b/vignettes/references.bib
@@ -1,6 +1,3 @@
-% This file was originally created with JabRef 2.7b.
-% Encoding: ISO8859_1
-
 @BOOK{bates1988,
   title = {Nonlinear regression and its applications},
   publisher = {Wiley-Interscience},
@@ -97,7 +94,7 @@
 @Techreport{ranke2014,
   title = {{Prüfung und Validierung von Modellierungssoftware als Alternative zu
     ModelMaker 4.0}},
-  author = {J. Ranke}, 
+  author = {J. Ranke},
   year = 2014,
   institution = {Umweltbundesamt},
   volume = {Projektnummer 27452}
@@ -146,3 +143,21 @@
   Volume                   = {45},
   Type                     = {Journal}
 }
+
+
+@article{efsa_2018_dimethenamid,
+	author = {EFSA},
+	issue = {4},
+	journal = {EFSA Journal},
+	pages = {5211},
+	title = {Peer review of the pesticide risk assessment of the active substance dimethenamid-P},
+	volume = {16},
+	year = {2018}
+}
+
+@techreport{dimethenamid_rar_2018_b8,
+  author = {{Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria}},
+  year = {2018},
+  title = {{Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - November 2017}},
+  url = {https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716}
+}
diff --git a/vignettes/web_only/.build.timestamp b/vignettes/web_only/.build.timestamp
new file mode 100644
index 00000000..e69de29b
diff --git a/vignettes/web_only/dimethenamid_2018.R b/vignettes/web_only/dimethenamid_2018.R
new file mode 100644
index 00000000..625cceb8
--- /dev/null
+++ b/vignettes/web_only/dimethenamid_2018.R
@@ -0,0 +1,66 @@
+## ---- include = FALSE---------------------------------------------------------
+require(knitr)
+options(digits = 5)
+opts_chunk$set(
+  comment = "",
+  tidy = FALSE,
+  cache = TRUE
+)
+
+## ----dimethenamid_data--------------------------------------------------------
+library(mkin)
+dmta_ds <- lapply(1:8, function(i) {
+  ds_i <- dimethenamid_2018$ds[[i]]$data
+  ds_i[ds_i$name == "DMTAP", "name"] <-  "DMTA"
+  ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+  ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
+## ----f_parent_mkin------------------------------------------------------------
+f_parent_mkin_const <- mmkin(c("SFO", "DFOP"), dmta_ds,
+  error_model = "const", quiet = TRUE)
+f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,
+  error_model = "tc", quiet = TRUE)
+
+## ----f_parent_mkin_sfo_const--------------------------------------------------
+plot(mixed(f_parent_mkin_const["SFO", ]))
+
+## ----f_parent_mkin_dfop_const-------------------------------------------------
+plot(mixed(f_parent_mkin_const["DFOP", ]))
+
+## ----f_parent_mkin_dfop_const_test--------------------------------------------
+plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE)
+
+## ----f_parent_mkin_dfop_tc_test-----------------------------------------------
+plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE)
+
+## ----f_parent_nlme, warning = FALSE-------------------------------------------
+f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
+f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
+
+## ----f_parent_nlme_logchol, warning = FALSE, eval = FALSE---------------------
+#  f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
+#    random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+#  anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
+#  f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+#    random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+#  # using log Cholesky parameterisation for random effects (nlme default) does
+#  # not converge and gives lots of warnings about the LME step not converging
+
+## ----AIC_parent_nlme----------------------------------------------------------
+anova(
+  f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+
+## ----plot_parent_nlme---------------------------------------------------------
+plot(f_parent_nlme_dfop_tc)
+
diff --git a/vignettes/web_only/dimethenamid_2018.html b/vignettes/web_only/dimethenamid_2018.html
new file mode 100644
index 00000000..e84a435c
--- /dev/null
+++ b/vignettes/web_only/dimethenamid_2018.html
@@ -0,0 +1,1864 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Example evaluations of the dimethenamid data from 2018
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + +
+
+
+
+
+ +
+ + + + + + + +

Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany
Privatdozent at the University of Bremen

+
+

Introduction

+

During the preparation of the journal article on nonlinear mixed-effects models in degradation kinetics (submitted) and the analysis of the dimethenamid degradation data analysed therein, a need for a more detailed analysis using not only nlme and saemix, but also nlmixr for fitting the mixed-effects models was identified.

+

This vignette is an attempt to satisfy this need.

+
+
+

Data

+

Residue data forming the basis for the endpoints derived in the conclusion on the peer review of the pesticide risk assessment of dimethenamid-P published by the European Food Safety Authority (EFSA) in 2018 (EFSA 2018) were transcribed from the risk assessment report (Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria 2018) which can be downloaded from the EFSA register of questions.

+

The data are available in the mkin package. The following code (hidden by default, please use the button to the right to show it) treats the data available for the racemic mixture dimethenamid (DMTA) and its enantiomer dimethenamid-P (DMTAP) in the same way, as no difference between their degradation behaviour was identified in the EU risk assessment. The observation times of each dataset are multiplied with the corresponding normalisation factor also available in the dataset, in order to make it possible to describe all datasets with a single set of parameters.

+

Also, datasets observed in the same soil are merged, resulting in dimethenamid (DMTA) data from six soils.

+
library(mkin)
+dmta_ds <- lapply(1:8, function(i) {
+  ds_i <- dimethenamid_2018$ds[[i]]$data
+  ds_i[ds_i$name == "DMTAP", "name"] <-  "DMTA"
+  ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+  ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
+
+

Parent degradation

+

We evaluate the observed degradation of the parent compound using simple exponential decline (SFO) and biexponential decline (DFOP), using constant variance (const) and a two-component variance (tc) as error models.

+
+

Separate evaluations

+

As a first step, to get a visual impression of the fit of the different models, we do separate evaluations for each soil using the mmkin function from the mkin package:

+
f_parent_mkin_const <- mmkin(c("SFO", "DFOP"), dmta_ds,
+  error_model = "const", quiet = TRUE)
+f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,
+  error_model = "tc", quiet = TRUE)
+

The plot of the individual SFO fits shown below suggests that at least in some datasets the degradation slows down towards later time points, and that the scatter of the residuals error is smaller for smaller values (panel to the right):

+
plot(mixed(f_parent_mkin_const["SFO", ]))
+

+

Using biexponential decline (DFOP) results in a slightly more random scatter of the residuals:

+
plot(mixed(f_parent_mkin_const["DFOP", ]))
+

+

The population curve (bold line) in the above plot results from taking the mean of the individual transformed parameters, i.e. of log k1 and log k2, as well as of the logit of the g parameter of the DFOP model). Here, this procedure does not result in parameters that represent the degradation well, because in some datasets the fitted value for k2 is extremely close to zero, leading to a log k2 value that dominates the average. This is alleviated if only rate constants that pass the t-test for significant difference from zero (on the untransformed scale) are considered in the averaging:

+
plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE)
+

+

While this is visually much more satisfactory, such an average procedure could introduce a bias, as not all results from the individual fits enter the population curve with the same weight. This is where nonlinear mixed-effects models can help out by treating all datasets with equally by fitting a parameter distribution model together with the degradation model and the error model (see below).

+

The remaining trend of the residuals to be higher for higher predicted residues is reduced by using the two-component error model:

+
plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE)
+

+
+
+

Nonlinear mixed-effects models

+

Instead of taking a model selection decision for each of the individual fits, we fit nonlinear mixed-effects models (using different fitting algorithms as implemented in different packages) and do model selection using all available data at the same time. In order to make sure that these decisions are not unduly influenced by the type of algorithm used, by implementation details or by the use of wrong control parameters, we compare the model selection results obtained with different R packages, with different algorithms and checking control parameters.

+
+

nlme

+

The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We use would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. However, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data.

+
f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
+f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
+

Note that overparameterisation is also indicated by warnings obtained when fitting SFO or DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in some iterations). In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below.

+
f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
+  random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
+f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+  random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+# using log Cholesky parameterisation for random effects (nlme default) does
+# not converge and gives lots of warnings about the LME step not converging
+

The model comparison function of the nlme package can directly be applied to these fits showing a similar goodness-of-fit of the SFO model, but a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant. as the p-value is below 0.0001.

+
anova(
+  f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+
                        Model df    AIC    BIC  logLik   Test L.Ratio p-value
+f_parent_nlme_sfo_const     1  5 818.63 834.00 -404.31                       
+f_parent_nlme_sfo_tc        2  6 820.61 839.06 -404.31 1 vs 2   0.014  0.9049
+f_parent_nlme_dfop_tc       3 10 687.84 718.59 -333.92 2 vs 3 140.771  <.0001
+

The selected model (DFOP with two-component error) fitted to the data assuming no correlations between random effects is shown below.

+
plot(f_parent_nlme_dfop_tc)
+

+
+
+

saemix

+

The saemix package provided the first Open Source implementation of the Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. SAEM fits of degradation models can be performed using an interface to the saemix package available in current development versions of the mkin package.

+

The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit.

+

The convergence plot for the SFO model using constant variance is shown below.

+
library(saemix)
+f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+  transformations = "saemix")
+plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")
+

+

Obviously the default number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model.

+
f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
+  transformations = "saemix")
+plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")
+

+

When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous. Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.

+
f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
+  control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+    save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+  transformations = "saemix")
+plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")
+

+

The same applies to the case where the DFOP model is fitted with the two-component error model.

+
f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+  control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+    save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+  transformations = "saemix")
+plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence")
+

+

The four combinations can be compared using the model comparison function from the saemix package:

+
compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+  f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc$so)
+
Likelihoods calculated by importance sampling
+
     AIC    BIC
+1 818.37 817.33
+2 820.38 819.14
+3 725.91 724.04
+4 688.09 686.01
+

As in the case of nlme fits, the DFOP model fitted with two-component error (number 4) gives the lowest AIC. The numeric values are reasonably close to the ones obtained using nlme, considering that the algorithms for fitting the model and for the likelihood calculation are quite different.

+
+
+

nlmixr

+

In the last years, a lot of effort has been put into the nlmixr package which is designed for pharmacokinetics, where nonlinear mixed-effects models are routinely used, but which can also be used for related data like chemical degradation data. A current development branch of the mkin package provides an interface between mkin and nlmixr. Here, we check if we get equivalent results when using a refined version of the First Order Conditional Estimation (FOCE) algorithm used in nlme, namely First Order Conditional Estimation with Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr.

+

First, the focei algorithm is used for the four model combinations and the goodness of fit of the results is compared.

+
f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
+f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
+f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
+f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei")
+
AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+  f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm)
+
                                    df    AIC
+f_parent_nlmixr_focei_sfo_const$nm   5 818.63
+f_parent_nlmixr_focei_sfo_tc$nm      6 820.61
+f_parent_nlmixr_focei_dfop_const$nm  9 728.11
+f_parent_nlmixr_focei_dfop_tc$nm    10 687.82
+

The AIC values are very close to the ones obtained with nlme.

+

Secondly, we use the SAEM estimation routine and check the convergence plots for SFO with constant variance

+
f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem",
+  control = nlmixr::saemControl(logLik = TRUE))
+traceplot(f_parent_nlmixr_saem_sfo_const$nm)
+

+

for SFO with two-component error

+
f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
+  control = nlmixr::saemControl(logLik = TRUE))
+nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
+

+

For DFOP with constant variance, the convergence plots show considerable instability of the fit, which can be alleviated by increasing the number of iterations and the number of parallel chains for the first phase of algorithm.

+
f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
+  control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
+nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm)
+

+

For DFOP with two-component error, the same increase in iterations and parallel chains was used, but using the two-component error appears to lead to a less erratic convergence, so this may not be necessary to this degree.

+
f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
+  control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
+nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
+

+

The AIC values are internally calculated using Gaussian quadrature. For an unknown reason, the AIC value obtained for the DFOP fit using the two-component error model is given as Infinity.

+
AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+  f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm)
+
                                   df    AIC
+f_parent_nlmixr_saem_sfo_const$nm   5 820.54
+f_parent_nlmixr_saem_sfo_tc$nm      6 835.26
+f_parent_nlmixr_saem_dfop_const$nm  9 850.72
+f_parent_nlmixr_saem_dfop_tc$nm    10    Inf
+
+
+
+
+

References

+ +
+
+

EFSA. 2018. “Peer Review of the Pesticide Risk Assessment of the Active Substance Dimethenamid-P.” EFSA Journal 16 (4): 5211.

+
+
+

Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria. 2018. “Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - November 2017.” https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716.

+
+
+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + + diff --git a/vignettes/web_only/dimethenamid_2018.rmd b/vignettes/web_only/dimethenamid_2018.rmd new file mode 100644 index 00000000..d3541a34 --- /dev/null +++ b/vignettes/web_only/dimethenamid_2018.rmd @@ -0,0 +1,374 @@ +--- +title: Example evaluations of the dimethenamid data from 2018 +author: Johannes Ranke +date: Last change 23 June 2021, built on `r format(Sys.Date(), format = "%d %b %Y")` +output: + html_document: + toc: true + toc_float: true + code_folding: hide + fig_retina: null +bibliography: ../references.bib +vignette: > + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +[Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany](http://www.jrwb.de)
+[Privatdozent at the University of Bremen](http://chem.uft.uni-bremen.de/ranke) + +```{r, include = FALSE} +require(knitr) +options(digits = 5) +opts_chunk$set( + comment = "", + tidy = FALSE, + cache = TRUE +) +``` + +# Introduction + +During the preparation of the journal article on nonlinear mixed-effects models in +degradation kinetics (submitted) and the analysis of the dimethenamid degradation +data analysed therein, a need for a more detailed analysis using not only nlme and saemix, +but also nlmixr for fitting the mixed-effects models was identified. + +This vignette is an attempt to satisfy this need. + +# Data + +Residue data forming the basis for the endpoints derived in the conclusion on +the peer review of the pesticide risk assessment of dimethenamid-P published by +the European Food Safety Authority (EFSA) in 2018 [@efsa_2018_dimethenamid] +were transcribed from the risk assessment report [@dimethenamid_rar_2018_b8] +which can be downloaded from the +[EFSA register of questions](https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716). + +The data are [available in the mkin +package](https://pkgdown.jrwb.de/mkin/reference/dimethenamid_2018.html). The +following code (hidden by default, please use the button to the right to show +it) treats the data available for the racemic mixture dimethenamid (DMTA) and +its enantiomer dimethenamid-P (DMTAP) in the same way, as no difference between +their degradation behaviour was identified in the EU risk assessment. The +observation times of each dataset are multiplied with the corresponding +normalisation factor also available in the dataset, in order to make it +possible to describe all datasets with a single set of parameters. + +Also, datasets observed in the same soil are merged, resulting in dimethenamid +(DMTA) data from six soils. + +```{r dimethenamid_data} +library(mkin) +dmta_ds <- lapply(1:8, function(i) { + ds_i <- dimethenamid_2018$ds[[i]]$data + ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA" + ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] + ds_i +}) +names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title) +dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]]) +dmta_ds[["Borstel 1"]] <- NULL +dmta_ds[["Borstel 2"]] <- NULL +dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) +dmta_ds[["Elliot 1"]] <- NULL +dmta_ds[["Elliot 2"]] <- NULL +``` + +# Parent degradation + +We evaluate the observed degradation of the parent compound using simple +exponential decline (SFO) and biexponential decline (DFOP), using constant +variance (const) and a two-component variance (tc) as error models. + +## Separate evaluations + +As a first step, to get a visual impression of the fit of the different models, +we do separate evaluations for each soil using the mmkin function from the +mkin package: + +```{r f_parent_mkin} +f_parent_mkin_const <- mmkin(c("SFO", "DFOP"), dmta_ds, + error_model = "const", quiet = TRUE) +f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds, + error_model = "tc", quiet = TRUE) +``` + +The plot of the individual SFO fits shown below suggests that at least in some +datasets the degradation slows down towards later time points, and that the +scatter of the residuals error is smaller for smaller values (panel to the +right): + +```{r f_parent_mkin_sfo_const} +plot(mixed(f_parent_mkin_const["SFO", ])) +``` + +Using biexponential decline (DFOP) results in a slightly more random +scatter of the residuals: + +```{r f_parent_mkin_dfop_const} +plot(mixed(f_parent_mkin_const["DFOP", ])) +``` + +The population curve (bold line) in the above plot results from taking the mean +of the individual transformed parameters, i.e. of log k1 and log k2, as well as +of the logit of the g parameter of the DFOP model). Here, this procedure +does not result in parameters that represent the degradation well, because in some +datasets the fitted value for k2 is extremely close to zero, leading to a log +k2 value that dominates the average. This is alleviated if only rate constants +that pass the t-test for significant difference from zero (on the untransformed +scale) are considered in the averaging: + +```{r f_parent_mkin_dfop_const_test} +plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE) +``` + +While this is visually much more satisfactory, such an average procedure could +introduce a bias, as not all results from the individual fits enter the +population curve with the same weight. This is where nonlinear mixed-effects +models can help out by treating all datasets with equally by fitting a +parameter distribution model together with the degradation model and the error +model (see below). + +The remaining trend of the residuals to be higher for higher predicted residues +is reduced by using the two-component error model: + +```{r f_parent_mkin_dfop_tc_test} +plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE) +``` + +## Nonlinear mixed-effects models + +Instead of taking a model selection decision for each of the individual fits, we fit +nonlinear mixed-effects models (using different fitting algorithms as implemented in +different packages) and do model selection using all available data at the same time. +In order to make sure that these decisions are not unduly influenced by the +type of algorithm used, by implementation details or by the use of wrong control +parameters, we compare the model selection results obtained with different R +packages, with different algorithms and checking control parameters. + +### nlme + +The nlme package was the first R extension providing facilities to fit nonlinear +mixed-effects models. We use would like to do model selection from all four +combinations of degradation models and error models based on the AIC. +However, fitting the DFOP model with constant variance and using default +control parameters results in an error, signalling that the maximum number +of 50 iterations was reached, potentially indicating overparameterisation. +However, the algorithm converges when the two-component error model is +used in combination with the DFOP model. This can be explained by the fact +that the smaller residues observed at later sampling times get more +weight when using the two-component error model which will counteract the +tendency of the algorithm to try parameter combinations unsuitable for +fitting these data. + +```{r f_parent_nlme, warning = FALSE} +f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ]) +#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error +f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ]) +f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ]) +``` + +Note that overparameterisation is also indicated by warnings obtained when +fitting SFO or DFOP with the two-component error model ('false convergence' in +the 'LME step' in some iterations). In addition to these fits, attempts +were also made to include correlations between random effects by using the +log Cholesky parameterisation of the matrix specifying them. The code +used for these attempts can be made visible below. + +```{r f_parent_nlme_logchol, warning = FALSE, eval = FALSE} +f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ], + random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1))) +anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better +f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc, + random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1))) +# using log Cholesky parameterisation for random effects (nlme default) does +# not converge and gives lots of warnings about the LME step not converging +``` + +The model comparison function of the nlme package can directly be applied +to these fits showing a similar goodness-of-fit of the SFO model, but a much +lower AIC for the DFOP model fitted with the two-component error model. +Also, the likelihood ratio test indicates that this difference is significant. +as the p-value is below 0.0001. + +```{r AIC_parent_nlme} +anova( + f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc +) +``` + +The selected model (DFOP with two-component error) fitted to the data assuming +no correlations between random effects is shown below. + +```{r plot_parent_nlme} +plot(f_parent_nlme_dfop_tc) +``` + +### saemix + +The saemix package provided the first Open Source implementation of the +Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. +SAEM fits of degradation models can be performed using an interface to the +saemix package available in current development versions of the mkin package. + +The corresponding SAEM fits of the four combinations of degradation and error +models are fitted below. As there is no convergence criterion implemented in +the saemix package, the convergence plots need to be manually checked for every +fit. + +The convergence plot for the SFO model using constant variance is shown below. + +```{r f_parent_saemix_sfo_const, results = 'hide'} +library(saemix) +f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE, + transformations = "saemix") +plot(f_parent_saemix_sfo_const$so, plot.type = "convergence") +``` + +Obviously the default number of iterations is sufficient to reach convergence. +This can also be said for the SFO fit using the two-component error model. + +```{r f_parent_saemix_sfo_tc, results = 'hide'} +f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE, + transformations = "saemix") +plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence") +``` + +When fitting the DFOP model with constant variance, parameter convergence +is not as unambiguous. Therefore, the number of iterations in the first +phase of the algorithm was increased, leading to visually satisfying +convergence. + +```{r f_parent_saemix_dfop_const, results = 'hide'} +f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE, + control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE, + save = FALSE, save.graphs = FALSE, displayProgress = FALSE), + transformations = "saemix") +plot(f_parent_saemix_dfop_const$so, plot.type = "convergence") +``` + +The same applies to the case where the DFOP model is fitted with the +two-component error model. Convergence of the variance of k2 is enhanced +by using the two-component error, it remains pretty stable already after 200 +iterations of the first phase. + +```{r f_parent_saemix_dfop_tc_moreiter, results = 'hide'} +f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE, + control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE, + save = FALSE, save.graphs = FALSE, displayProgress = FALSE), + transformations = "saemix") +plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence") +``` + +The four combinations can be compared using the model comparison function from the +saemix package: + +```{r AIC_parent_saemix} +compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so, + f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so) +``` + +As in the case of nlme fits, the DFOP model fitted with two-component error +(number 4) gives the lowest AIC. The numeric values are reasonably close to +the ones obtained using nlme, considering that the algorithms for fitting the +model and for the likelihood calculation are quite different. + +In order to check the influence of the likelihood calculation algorithms +implemented in saemix, the likelihood from Gaussian quadrature is added +to the best fit, and the AIC values obtained from the three methods +are compared. + +```{r AIC_parent_saemix_methods} +f_parent_saemix_dfop_tc_moreiter$so <- + llgq.saemix(f_parent_saemix_dfop_tc_moreiter$so) +AIC(f_parent_saemix_dfop_tc_moreiter$so) +AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "gq") +AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "lin") +``` + +The AIC values based on importance sampling and Gaussian quadrature are quite +similar. Using linearisation is less accurate, but still gives a similar value. + + +### nlmixr + +In the last years, a lot of effort has been put into the nlmixr package which +is designed for pharmacokinetics, where nonlinear mixed-effects models are +routinely used, but which can also be used for related data like chemical +degradation data. A current development branch of the mkin package provides +an interface between mkin and nlmixr. Here, we check if we get equivalent +results when using a refined version of the First Order Conditional Estimation +(FOCE) algorithm used in nlme, namely First Order Conditional Estimation with +Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr. + +First, the focei algorithm is used for the four model combinations and the +goodness of fit of the results is compared. + +```{r f_parent_nlmixr_focei, results = "hide", message = FALSE, warning = FALSE} +f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei") +f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei") +f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei") +f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei") +``` + +```{r AIC_parent_nlmixr_focei} +AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm, + f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm) +``` + +The AIC values are very close to the ones obtained with nlme. + +Secondly, we use the SAEM estimation routine and check the convergence plots for +SFO with constant variance + +```{r f_parent_nlmixr_saem_sfo_const, results = "hide", warning = FALSE, message = FALSE} +f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem", + control = nlmixr::saemControl(logLik = TRUE)) +traceplot(f_parent_nlmixr_saem_sfo_const$nm) +``` + +for SFO with two-component error + +```{r f_parent_nlmixr_saem_sfo_tc, results = "hide", warning = FALSE, message = FALSE} +f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem", + control = nlmixr::saemControl(logLik = TRUE)) +nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm) +``` + +For DFOP with constant variance, the convergence plots show considerable instability +of the fit, which can be alleviated by increasing the number of iterations and +the number of parallel chains for the first phase of algorithm. + +```{r f_parent_nlmixr_saem_dfop_const, results = "hide", warning = FALSE, message = FALSE} +f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem", + control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15) +nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm) +``` + +For DFOP with two-component error, the same increase in iterations and parallel +chains was used, but using the two-component error appears to lead to a less +erratic convergence, so this may not be necessary to this degree. + + +```{r f_parent_nlmixr_saem_dfop_tc, results = "hide", warning = FALSE, message = FALSE} +f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem", + control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15)) +nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm) +``` + +The AIC values are internally calculated using Gaussian quadrature. For an +unknown reason, the AIC value obtained for the DFOP fit using the two-component +error model is given as Infinity. + +```{r AIC_parent_nlmixr_saem} +AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm, + f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm) +``` + + + + +# References + + diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png new file mode 100644 index 00000000..de699f30 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png new file mode 100644 index 00000000..5f752168 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png new file mode 100644 index 00000000..0265c22f Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png new file mode 100644 index 00000000..9bbb57c7 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png new file mode 100644 index 00000000..043a1fca Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png new file mode 100644 index 00000000..7d2aea59 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png new file mode 100644 index 00000000..032d6043 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png new file mode 100644 index 00000000..a602715c Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png new file mode 100644 index 00000000..621d34f2 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png new file mode 100644 index 00000000..e127b354 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png new file mode 100644 index 00000000..ecc6ccf3 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png new file mode 100644 index 00000000..1337ea8f Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png new file mode 100644 index 00000000..492a7888 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png new file mode 100644 index 00000000..5e3b9c13 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png new file mode 100644 index 00000000..3ca2804d Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png differ diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png new file mode 100644 index 00000000..a48f41b2 Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png differ -- cgit v1.2.1 From 0b754ffa91b9496bdd2f892cf3ca2bd887028dea Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Tue, 27 Jul 2021 18:22:01 +0200 Subject: Fix dimethenamid vignette problems and update docs --- vignettes/web_only/dimethenamid_2018.html | 109 ++++++++++++++++++++++++------ vignettes/web_only/dimethenamid_2018.rmd | 57 +++++++++++----- 2 files changed, 128 insertions(+), 38 deletions(-) (limited to 'vignettes') diff --git a/vignettes/web_only/dimethenamid_2018.html b/vignettes/web_only/dimethenamid_2018.html index e84a435c..df8200eb 100644 --- a/vignettes/web_only/dimethenamid_2018.html +++ b/vignettes/web_only/dimethenamid_2018.html @@ -1594,7 +1594,7 @@ div.tocify {

Example evaluations of the dimethenamid data from 2018

Johannes Ranke

-

Last change 23 June 2021, built on 25 Jun 2021

+

Last change 27 July 2021, built on 27 Jul 2021

@@ -1655,18 +1655,20 @@ f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,

nlme

The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We use would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. However, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data.

-
f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
-#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+
library(nlme)
+f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ])
+# maxIter = 50 reached
 f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
 f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])

Note that overparameterisation is also indicated by warnings obtained when fitting SFO or DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in some iterations). In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below.

f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
   random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
 anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
-f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
-  random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+#f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+#  random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
 # using log Cholesky parameterisation for random effects (nlme default) does
-# not converge and gives lots of warnings about the LME step not converging
+# not converge here and gives lots of warnings about the LME step not converging

The model comparison function of the nlme package can directly be applied to these fits showing a similar goodness-of-fit of the SFO model, but a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant. as the p-value is below 0.0001.

anova(
   f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
@@ -1685,24 +1687,24 @@ f_parent_nlme_dfop_tc       3 10 687.84 718.59 -333.92 2 vs 3 140.771  <.0001
 

The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit.

The convergence plot for the SFO model using constant variance is shown below.

library(saemix)
-f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+f_parent_saemix_sfo_const <- mkin::saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
   transformations = "saemix")
 plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")

Obviously the default number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model.

-
f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
+
f_parent_saemix_sfo_tc <- mkin::saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
   transformations = "saemix")
 plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")

-

When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous. Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.

-
f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
+

When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous (see the failure of nlme with the default number of iterations above). Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.

+
f_parent_saemix_dfop_const <- mkin::saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
   control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
     save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
   transformations = "saemix")
 plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")

-

The same applies to the case where the DFOP model is fitted with the two-component error model.

-
f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+

The same applies to the case where the DFOP model is fitted with the two-component error model. Convergence of the variance of k2 is enhanced by using the two-component error, it remains more or less stable already after 200 iterations of the first phase.

+
f_parent_saemix_dfop_tc_moreiter <- mkin::saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
   control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
     save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
   transformations = "saemix")
@@ -1710,20 +1712,31 @@ plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence")

The four combinations can be compared using the model comparison function from the saemix package:

compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
-  f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc$so)
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so)
Likelihoods calculated by importance sampling
     AIC    BIC
 1 818.37 817.33
 2 820.38 819.14
 3 725.91 724.04
-4 688.09 686.01
+4 683.64 681.55

As in the case of nlme fits, the DFOP model fitted with two-component error (number 4) gives the lowest AIC. The numeric values are reasonably close to the ones obtained using nlme, considering that the algorithms for fitting the model and for the likelihood calculation are quite different.

+

In order to check the influence of the likelihood calculation algorithms implemented in saemix, the likelihood from Gaussian quadrature is added to the best fit, and the AIC values obtained from the three methods are compared.

+
f_parent_saemix_dfop_tc_moreiter$so <-
+  llgq.saemix(f_parent_saemix_dfop_tc_moreiter$so)
+AIC(f_parent_saemix_dfop_tc_moreiter$so)
+
[1] 683.64
+
AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "gq")
+
[1] 683.7
+
AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "lin")
+
[1] 683.17
+

The AIC values based on importance sampling and Gaussian quadrature are quite similar. Using linearisation is less accurate, but still gives a similar value.

nlmixr

In the last years, a lot of effort has been put into the nlmixr package which is designed for pharmacokinetics, where nonlinear mixed-effects models are routinely used, but which can also be used for related data like chemical degradation data. A current development branch of the mkin package provides an interface between mkin and nlmixr. Here, we check if we get equivalent results when using a refined version of the First Order Conditional Estimation (FOCE) algorithm used in nlme, namely First Order Conditional Estimation with Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr.

First, the focei algorithm is used for the four model combinations and the goodness of fit of the results is compared.

-
f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
+
library(nlmixr)
+f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
 f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
 f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
 f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei")
@@ -1734,7 +1747,14 @@ f_parent_nlmixr_focei_sfo_const$nm 5 818.63 f_parent_nlmixr_focei_sfo_tc$nm 6 820.61 f_parent_nlmixr_focei_dfop_const$nm 9 728.11 f_parent_nlmixr_focei_dfop_tc$nm 10 687.82
-

The AIC values are very close to the ones obtained with nlme.

+

The AIC values are very close to the ones obtained with nlme which are repeated below for convenience.

+
AIC(
+  f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+
                        df    AIC
+f_parent_nlme_sfo_const  5 818.63
+f_parent_nlme_sfo_tc     6 820.61
+f_parent_nlme_dfop_tc   10 687.84

Secondly, we use the SAEM estimation routine and check the convergence plots for SFO with constant variance

f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem",
   control = nlmixr::saemControl(logLik = TRUE))
@@ -1743,17 +1763,17 @@ traceplot(f_parent_nlmixr_saem_sfo_const$nm)

for SFO with two-component error

f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
   control = nlmixr::saemControl(logLik = TRUE))
-nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
+traceplot(f_parent_nlmixr_saem_sfo_tc$nm)

For DFOP with constant variance, the convergence plots show considerable instability of the fit, which can be alleviated by increasing the number of iterations and the number of parallel chains for the first phase of algorithm.

f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
   control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
-nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm)
+traceplot(f_parent_nlmixr_saem_dfop_const$nm)

For DFOP with two-component error, the same increase in iterations and parallel chains was used, but using the two-component error appears to lead to a less erratic convergence, so this may not be necessary to this degree.

f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
   control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
-nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
+traceplot(f_parent_nlmixr_saem_dfop_tc$nm)

The AIC values are internally calculated using Gaussian quadrature. For an unknown reason, the AIC value obtained for the DFOP fit using the two-component error model is given as Infinity.

AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
@@ -1761,8 +1781,55 @@ nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
                                   df    AIC
 f_parent_nlmixr_saem_sfo_const$nm   5 820.54
 f_parent_nlmixr_saem_sfo_tc$nm      6 835.26
-f_parent_nlmixr_saem_dfop_const$nm  9 850.72
-f_parent_nlmixr_saem_dfop_tc$nm    10    Inf
+f_parent_nlmixr_saem_dfop_const$nm 9 842.84 +f_parent_nlmixr_saem_dfop_tc$nm 10 684.51 +

The following table gives the AIC values obtained with the three packages.

+
AIC_all <- data.frame(
+  nlme = c(AIC(f_parent_nlme_sfo_const), AIC(f_parent_nlme_sfo_tc), NA, AIC(f_parent_nlme_dfop_tc)),
+  nlmixr_focei = sapply(list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+  f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm), AIC),
+  saemix = sapply(list(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+    f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so), AIC),
+  nlmixr_saem = sapply(list(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+  f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm), AIC)
+)
+kable(AIC_all)
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
nlmenlmixr_foceisaemixnlmixr_saem
818.63818.63818.37820.54
820.61820.61820.38835.26
NA728.11725.91842.84
687.84687.82683.64684.51
diff --git a/vignettes/web_only/dimethenamid_2018.rmd b/vignettes/web_only/dimethenamid_2018.rmd index d3541a34..30325044 100644 --- a/vignettes/web_only/dimethenamid_2018.rmd +++ b/vignettes/web_only/dimethenamid_2018.rmd @@ -1,7 +1,7 @@ --- title: Example evaluations of the dimethenamid data from 2018 author: Johannes Ranke -date: Last change 23 June 2021, built on `r format(Sys.Date(), format = "%d %b %Y")` +date: Last change 27 July 2021, built on `r format(Sys.Date(), format = "%d %b %Y")` output: html_document: toc: true @@ -163,8 +163,10 @@ tendency of the algorithm to try parameter combinations unsuitable for fitting these data. ```{r f_parent_nlme, warning = FALSE} +library(nlme) f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ]) -#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error +#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) +# maxIter = 50 reached f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ]) f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ]) ``` @@ -180,10 +182,10 @@ used for these attempts can be made visible below. f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ], random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1))) anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better -f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc, - random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1))) +#f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc, +# random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1))) # using log Cholesky parameterisation for random effects (nlme default) does -# not converge and gives lots of warnings about the LME step not converging +# not converge here and gives lots of warnings about the LME step not converging ``` The model comparison function of the nlme package can directly be applied @@ -221,7 +223,7 @@ The convergence plot for the SFO model using constant variance is shown below. ```{r f_parent_saemix_sfo_const, results = 'hide'} library(saemix) -f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE, +f_parent_saemix_sfo_const <- mkin::saem(f_parent_mkin_const["SFO", ], quiet = TRUE, transformations = "saemix") plot(f_parent_saemix_sfo_const$so, plot.type = "convergence") ``` @@ -230,18 +232,19 @@ Obviously the default number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model. ```{r f_parent_saemix_sfo_tc, results = 'hide'} -f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE, +f_parent_saemix_sfo_tc <- mkin::saem(f_parent_mkin_tc["SFO", ], quiet = TRUE, transformations = "saemix") plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence") ``` When fitting the DFOP model with constant variance, parameter convergence -is not as unambiguous. Therefore, the number of iterations in the first +is not as unambiguous (see the failure of nlme with the default number of +iterations above). Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence. ```{r f_parent_saemix_dfop_const, results = 'hide'} -f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE, +f_parent_saemix_dfop_const <- mkin::saem(f_parent_mkin_const["DFOP", ], quiet = TRUE, control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE, save = FALSE, save.graphs = FALSE, displayProgress = FALSE), transformations = "saemix") @@ -250,11 +253,11 @@ plot(f_parent_saemix_dfop_const$so, plot.type = "convergence") The same applies to the case where the DFOP model is fitted with the two-component error model. Convergence of the variance of k2 is enhanced -by using the two-component error, it remains pretty stable already after 200 +by using the two-component error, it remains more or less stable already after 200 iterations of the first phase. ```{r f_parent_saemix_dfop_tc_moreiter, results = 'hide'} -f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE, +f_parent_saemix_dfop_tc_moreiter <- mkin::saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE, control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE, save = FALSE, save.graphs = FALSE, displayProgress = FALSE), transformations = "saemix") @@ -306,6 +309,7 @@ First, the focei algorithm is used for the four model combinations and the goodness of fit of the results is compared. ```{r f_parent_nlmixr_focei, results = "hide", message = FALSE, warning = FALSE} +library(nlmixr) f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei") f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei") f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei") @@ -317,7 +321,14 @@ AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm, f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm) ``` -The AIC values are very close to the ones obtained with nlme. +The AIC values are very close to the ones obtained with nlme which are repeated below +for convenience. + +```{r AIC_parent_nlme_rep} +AIC( + f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc +) +``` Secondly, we use the SAEM estimation routine and check the convergence plots for SFO with constant variance @@ -333,7 +344,7 @@ for SFO with two-component error ```{r f_parent_nlmixr_saem_sfo_tc, results = "hide", warning = FALSE, message = FALSE} f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem", control = nlmixr::saemControl(logLik = TRUE)) -nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm) +traceplot(f_parent_nlmixr_saem_sfo_tc$nm) ``` For DFOP with constant variance, the convergence plots show considerable instability @@ -343,7 +354,7 @@ the number of parallel chains for the first phase of algorithm. ```{r f_parent_nlmixr_saem_dfop_const, results = "hide", warning = FALSE, message = FALSE} f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem", control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15) -nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm) +traceplot(f_parent_nlmixr_saem_dfop_const$nm) ``` For DFOP with two-component error, the same increase in iterations and parallel @@ -354,7 +365,7 @@ erratic convergence, so this may not be necessary to this degree. ```{r f_parent_nlmixr_saem_dfop_tc, results = "hide", warning = FALSE, message = FALSE} f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem", control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15)) -nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm) +traceplot(f_parent_nlmixr_saem_dfop_tc$nm) ``` The AIC values are internally calculated using Gaussian quadrature. For an @@ -366,8 +377,20 @@ AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm, f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm) ``` - - +The following table gives the AIC values obtained with the three packages. + +```{r AIC_all} +AIC_all <- data.frame( + nlme = c(AIC(f_parent_nlme_sfo_const), AIC(f_parent_nlme_sfo_tc), NA, AIC(f_parent_nlme_dfop_tc)), + nlmixr_focei = sapply(list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm, + f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm), AIC), + saemix = sapply(list(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so, + f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so), AIC), + nlmixr_saem = sapply(list(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm, + f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm), AIC) +) +kable(AIC_all) +``` # References -- cgit v1.2.1 From 51fab94230e926cec690dc455964bd797a97b7c7 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 4 Aug 2021 16:37:52 +0200 Subject: Improve AIC table in vignette --- vignettes/web_only/dimethenamid_2018.rmd | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) (limited to 'vignettes') diff --git a/vignettes/web_only/dimethenamid_2018.rmd b/vignettes/web_only/dimethenamid_2018.rmd index 30325044..c152e578 100644 --- a/vignettes/web_only/dimethenamid_2018.rmd +++ b/vignettes/web_only/dimethenamid_2018.rmd @@ -1,7 +1,7 @@ --- title: Example evaluations of the dimethenamid data from 2018 author: Johannes Ranke -date: Last change 27 July 2021, built on `r format(Sys.Date(), format = "%d %b %Y")` +date: Last change 4 August 2021, built on `r format(Sys.Date(), format = "%d %b %Y")` output: html_document: toc: true @@ -381,6 +381,8 @@ The following table gives the AIC values obtained with the three packages. ```{r AIC_all} AIC_all <- data.frame( + "Degradation model" = c("SFO", "SFO", "DFOP", "DFOP"), + "Error model" = c("const", "tc", "const", "tc"), nlme = c(AIC(f_parent_nlme_sfo_const), AIC(f_parent_nlme_sfo_tc), NA, AIC(f_parent_nlme_dfop_tc)), nlmixr_focei = sapply(list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm, f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm), AIC), -- cgit v1.2.1 From c41381a961263c28d60976e68923157916c78b15 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 16 Sep 2021 15:31:13 +0200 Subject: Adapt and improve the dimethenamid vignette Adapt to the corrected data and unify control parameters for saemix and nlmixr with saem. Update docs --- vignettes/FOCUS_D.html | 10 +- vignettes/FOCUS_L.html | 71 +++--- vignettes/mkin.html | 2 +- vignettes/references.bib | 13 ++ vignettes/twa.html | 2 +- vignettes/web_only/.build.timestamp | 0 vignettes/web_only/dimethenamid_2018.R | 116 ++++++++++ vignettes/web_only/dimethenamid_2018.html | 250 +++++++++++---------- vignettes/web_only/dimethenamid_2018.rmd | 248 ++++++++++---------- .../figure-html/f_parent_mkin_dfop_const-1.png | Bin 60693 -> 58963 bytes .../f_parent_mkin_dfop_const_test-1.png | Bin 60929 -> 59123 bytes .../figure-html/f_parent_mkin_dfop_tc_test-1.png | Bin 62234 -> 60654 bytes .../figure-html/f_parent_mkin_sfo_const-1.png | Bin 58445 -> 57222 bytes .../f_parent_nlmixr_saem_dfop_const-1.png | Bin 92167 -> 87338 bytes .../figure-html/f_parent_nlmixr_saem_dfop_tc-1.png | Bin 76934 -> 81506 bytes .../f_parent_nlmixr_saem_sfo_const-1.png | Bin 62426 -> 72547 bytes .../figure-html/f_parent_nlmixr_saem_sfo_tc-1.png | Bin 70230 -> 73363 bytes .../figure-html/f_parent_saemix_dfop_const-1.png | Bin 41208 -> 38179 bytes .../f_parent_saemix_dfop_const_moreiter-1.png | Bin 39456 -> 0 bytes .../figure-html/f_parent_saemix_dfop_tc-1.png | Bin 31646 -> 30583 bytes .../f_parent_saemix_dfop_tc_moreiter-1.png | Bin 32077 -> 0 bytes .../figure-html/f_parent_saemix_sfo_const-1.png | Bin 35758 -> 34645 bytes .../figure-html/f_parent_saemix_sfo_tc-1.png | Bin 30708 -> 28683 bytes .../f_parent_saemix_sfo_tc_moreiter-1.png | Bin 30416 -> 0 bytes .../figure-html/plot_parent_nlme-1.png | Bin 60491 -> 59533 bytes 25 files changed, 438 insertions(+), 274 deletions(-) delete mode 100644 vignettes/web_only/.build.timestamp create mode 100644 vignettes/web_only/dimethenamid_2018.R delete mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png delete mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png delete mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png (limited to 'vignettes') diff --git a/vignettes/FOCUS_D.html b/vignettes/FOCUS_D.html index 0e983b98..ba514c18 100644 --- a/vignettes/FOCUS_D.html +++ b/vignettes/FOCUS_D.html @@ -360,7 +360,7 @@ pre code {

Example evaluation of FOCUS Example Dataset D

Johannes Ranke

-

Last change 31 January 2019 (rebuilt 2021-09-15)

+

Last change 31 January 2019 (rebuilt 2021-09-16)

@@ -434,10 +434,10 @@ print(FOCUS_2006_D)

A comprehensive report of the results is obtained using the summary method for mkinfit objects.

summary(fit)
-
## mkin version used for fitting:    1.0.5 
+
## mkin version used for fitting:    1.1.0 
 ## R version used for fitting:       4.1.1 
-## Date of fit:     Wed Sep 15 17:39:28 2021 
-## Date of summary: Wed Sep 15 17:39:28 2021 
+## Date of fit:     Thu Sep 16 13:57:32 2021 
+## Date of summary: Thu Sep 16 13:57:33 2021 
 ## 
 ## Equations:
 ## d_parent/dt = - k_parent * parent
@@ -445,7 +445,7 @@ print(FOCUS_2006_D)
## ## Model predictions using solution type analytical ## -## Fitted using 401 model solutions performed in 0.143 s +## Fitted using 401 model solutions performed in 0.149 s ## ## Error model: Constant variance ## diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index 717a01be..b6ebb606 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -27,11 +27,8 @@ document.addEventListener('DOMContentLoaded', function(e) { } }); -