#' Single First-Order Reversible Binding kinetics #' #' Function describing the solution of the differential equations describing #' the kinetic model with first-order terms for a two-way transfer from a free #' to a bound fraction, and a first-order degradation term for the free #' fraction. The initial condition is a defined amount in the free fraction #' and no substance in the bound fraction. #' #' @param t Time. #' @param parent.0 Starting value for the response variable at time zero. #' @param k_12 Kinetic constant describing transfer from free to bound. #' @param k_21 Kinetic constant describing transfer from bound to free. #' @param k_1output Kinetic constant describing degradation of the free #' fraction. #' @return The value of the response variable, which is the sum of free and #' bound fractions at time \code{t}. #' @references FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence #' and Degradation Kinetics from Environmental Fate Studies on Pesticides in #' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics, #' EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, #' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics} #' @examples #' #' \dontrun{plot(function(x) SFORB.solution(x, 100, 0.5, 2, 3), 0, 2)} #' #' @export SFORB.solution = function(t, parent.0, k_12, k_21, k_1output) { sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21) b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp parent = parent.0 * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) + ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t)) }