# Copyright (C) 2010-2016,2018,2019 Johannes Ranke # Some lines in this code are copyright (C) 2013 Eurofins Regulatory AG # Contact: jranke@uni-bremen.de # This file is part of the R package mkin # mkin is free software: you can redistribute it and/or modify it under the # terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/> mkinpredict <- function(x, odeparms, odeini, outtimes = seq(0, 120, by = 0.1), solution_type = "deSolve", use_compiled = "auto", method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, map_output = TRUE, ...) { UseMethod("mkinpredict", x) } mkinpredict.mkinmod <- function(x, odeparms = c(k_parent_sink = 0.1), odeini = c(parent = 100), outtimes = seq(0, 120, by = 0.1), solution_type = "deSolve", use_compiled = "auto", method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, map_output = TRUE, ...) { # Get the names of the state variables in the model mod_vars <- names(x$diffs) # Order the inital values for state variables if they are named if (!is.null(names(odeini))) { odeini <- odeini[mod_vars] } # Create function for evaluation of expressions with ode parameters and initial values evalparse <- function(string) { eval(parse(text=string), as.list(c(odeparms, odeini))) } # Create a function calculating the differentials specified by the model # if necessary if (solution_type == "analytical") { parent.type = names(x$map[[1]])[1] parent.name = names(x$diffs)[[1]] o <- switch(parent.type, SFO = SFO.solution(outtimes, evalparse(parent.name), ifelse(x$use_of_ff == "min", evalparse(paste("k", parent.name, "sink", sep="_")), evalparse(paste("k", parent.name, sep="_")))), FOMC = FOMC.solution(outtimes, evalparse(parent.name), evalparse("alpha"), evalparse("beta")), IORE = IORE.solution(outtimes, evalparse(parent.name), ifelse(x$use_of_ff == "min", evalparse(paste("k__iore", parent.name, "sink", sep="_")), evalparse(paste("k__iore", parent.name, sep="_"))), evalparse("N_parent")), DFOP = DFOP.solution(outtimes, evalparse(parent.name), evalparse("k1"), evalparse("k2"), evalparse("g")), HS = HS.solution(outtimes, evalparse(parent.name), evalparse("k1"), evalparse("k2"), evalparse("tb")), SFORB = SFORB.solution(outtimes, evalparse(parent.name), evalparse(paste("k", parent.name, "bound", sep="_")), evalparse(paste("k", sub("free", "bound", parent.name), "free", sep="_")), evalparse(paste("k", parent.name, "sink", sep="_"))), logistic = logistic.solution(outtimes, evalparse(parent.name), evalparse("kmax"), evalparse("k0"), evalparse("r")) ) out <- data.frame(outtimes, o) names(out) <- c("time", sub("_free", "", parent.name)) } if (solution_type == "eigen") { coefmat.num <- matrix(sapply(as.vector(x$coefmat), evalparse), nrow = length(mod_vars)) e <- eigen(coefmat.num) c <- solve(e$vectors, odeini) f.out <- function(t) { e$vectors %*% diag(exp(e$values * t), nrow=length(mod_vars)) %*% c } o <- matrix(mapply(f.out, outtimes), nrow = length(mod_vars), ncol = length(outtimes)) out <- data.frame(outtimes, t(o)) names(out) <- c("time", mod_vars) } if (solution_type == "deSolve") { if (!is.null(x$cf) & use_compiled[1] != FALSE) { out <- ode( y = odeini, times = outtimes, func = "func", initfunc = "initpar", dllname = getDynLib(x$cf)[["name"]], parms = odeparms[x$parms], # Order matters when using compiled models method = method.ode, atol = atol, rtol = rtol, ... ) } else { mkindiff <- function(t, state, parms) { time <- t diffs <- vector() for (box in names(x$diffs)) { diffname <- paste("d", box, sep="_") diffs[diffname] <- with(as.list(c(time, state, parms)), eval(parse(text=x$diffs[[box]]))) } return(list(c(diffs))) } out <- ode( y = odeini, times = outtimes, func = mkindiff, parms = odeparms, method = method.ode, atol = atol, rtol = rtol, ... ) } if (sum(is.na(out)) > 0) { stop("Differential equations were not integrated for all output times because\n", "NaN values occurred in output from ode()") } } if (map_output) { # Output transformation for models with unobserved compartments like SFORB out_mapped <- data.frame(time = out[,"time"]) for (var in names(x$map)) { if((length(x$map[[var]]) == 1) || solution_type == "analytical") { out_mapped[var] <- out[, var] } else { out_mapped[var] <- rowSums(out[, x$map[[var]]]) } } return(out_mapped) } else { return(out) } } mkinpredict.mkinfit <- function(x, odeparms = x$bparms.ode, odeini = x$bparms.state, outtimes = seq(0, 120, by = 0.1), solution_type = "deSolve", use_compiled = "auto", method.ode = "lsoda", atol = 1e-8, rtol = 1e-10, map_output = TRUE, ...) { mkinpredict(x$mkinmod, odeparms, odeini, outtimes, solution_type, use_compiled, method.ode, atol, rtol, map_output, ...) }