#' Fit one or more kinetic models with one or more state variables to one or #' more datasets #' #' This function calls \code{\link{mkinfit}} on all combinations of models and #' datasets specified in its first two arguments. #' #' @param models Either a character vector of shorthand names like #' \code{c("SFO", "FOMC", "DFOP", "HS", "SFORB")}, or an optionally named #' list of \code{\link{mkinmod}} objects. #' @param datasets An optionally named list of datasets suitable as observed #' data for \code{\link{mkinfit}}. #' @param cores The number of cores to be used for multicore processing. This #' is only used when the \code{cluster} argument is \code{NULL}. On Windows #' machines, cores > 1 is not supported, you need to use the \code{cluster} #' argument to use multiple logical processors. Per default, all cores #' detected by [parallel::detectCores()] are used, except on Windows where #' the default is 1. #' @param cluster A cluster as returned by \code{\link{makeCluster}} to be used #' for parallel execution. #' @param \dots Further arguments that will be passed to \code{\link{mkinfit}}. #' @importFrom parallel mclapply parLapply detectCores #' @return A two-dimensional \code{\link{array}} of \code{\link{mkinfit}} #' objects and/or try-errors that can be indexed using the model names for the #' first index (row index) and the dataset names for the second index (column #' index). #' @author Johannes Ranke #' @seealso \code{\link{[.mmkin}} for subsetting, \code{\link{plot.mmkin}} for #' plotting. #' @keywords optimize #' @examples #' #' \dontrun{ #' m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"), #' M1 = mkinsub("SFO", "M2"), #' M2 = mkinsub("SFO"), use_of_ff = "max") #' #' m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"), #' M1 = mkinsub("SFO", "M2"), #' M2 = mkinsub("SFO"), use_of_ff = "max") #' #' models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin) #' datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data) #' names(datasets) <- paste("Dataset", 1:3) #' #' time_default <- system.time(fits.0 <- mmkin(models, datasets, quiet = TRUE)) #' time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE)) #' #' time_default #' time_1 #' #' endpoints(fits.0[["SFO_lin", 2]]) #' #' # plot.mkinfit handles rows or columns of mmkin result objects #' plot(fits.0[1, ]) #' plot(fits.0[1, ], obs_var = c("M1", "M2")) #' plot(fits.0[, 1]) #' # Use double brackets to extract a single mkinfit object, which will be plotted #' # by plot.mkinfit and can be plotted using plot_sep #' plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE) #' plot_sep(fits.0[[1, 1]]) #' # Plotting with mmkin (single brackets, extracting an mmkin object) does not #' # allow to plot the observed variables separately #' plot(fits.0[1, 1]) #' #' # On Windows, we can use multiple cores by making a cluster using the parallel #' # package, which gets loaded with mkin, and passing it to mmkin, e.g. #' cl <- makePSOCKcluster(12) #' f <- mmkin(c("SFO", "FOMC", "DFOP"), #' list(A = FOCUS_2006_A, B = FOCUS_2006_B, C = FOCUS_2006_C, D = FOCUS_2006_D), #' cluster = cl, quiet = TRUE) #' print(f) #' # We get false convergence for the FOMC fit to FOCUS_2006_A because this #' # dataset is really SFO, and the FOMC fit is overparameterised #' stopCluster(cl) #' } #' #' @export mmkin mmkin <- function(models = c("SFO", "FOMC", "DFOP"), datasets, cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(), cluster = NULL, ...) { call <- match.call() parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE", "logistic") n.m <- length(models) n.d <- length(datasets) n.fits <- n.m * n.d fit_indices <- matrix(1:n.fits, ncol = n.d) # Check models and define their names if (!all(sapply(models, function(x) inherits(x, "mkinmod")))) { if (!all(models %in% parent_models_available)) { stop("Please supply models as a list of mkinmod objects or a vector combined of\n ", paste(parent_models_available, collapse = ", ")) } else { names(models) <- models } } else { if (is.null(names(models))) names(models) <- as.character(1:n.m) } # Check datasets and define their names if (is.null(names(datasets))) names(datasets) <- as.character(1:n.d) # Define names for fit index dimnames(fit_indices) <- list(model = names(models), dataset = names(datasets)) fit_function <- function(fit_index) { w <- which(fit_indices == fit_index, arr.ind = TRUE) model_index <- w[1] dataset_index <- w[2] res <- try(mkinfit(models[[model_index]], datasets[[dataset_index]], ...)) if (!inherits(res, "try-error")) res$mkinmod$name <- names(models)[model_index] return(res) } if (is.null(cluster)) { results <- parallel::mclapply(as.list(1:n.fits), fit_function, mc.cores = cores, mc.preschedule = FALSE) } else { results <- parallel::parLapply(cluster, as.list(1:n.fits), fit_function) } attributes(results) <- attributes(fit_indices) attr(results, "call") <- call class(results) <- "mmkin" return(results) } #' Subsetting method for mmkin objects #' #' @param x An \code{\link{mmkin} object} #' @param i Row index selecting the fits for specific models #' @param j Column index selecting the fits to specific datasets #' @param ... Not used, only there to satisfy the generic method definition #' @param drop If FALSE, the method always returns an mmkin object, otherwise #' either a list of mkinfit objects or a single mkinfit object. #' @return An object of class \code{\link{mmkin}}. #' @author Johannes Ranke #' @rdname Extract.mmkin #' @examples #' #' # Only use one core, to pass R CMD check --as-cran #' fits <- mmkin(c("SFO", "FOMC"), list(B = FOCUS_2006_B, C = FOCUS_2006_C), #' cores = 1, quiet = TRUE) #' fits["FOMC", ] #' fits[, "B"] #' fits["SFO", "B"] #' #' head( #' # This extracts an mkinfit object with lots of components #' fits[["FOMC", "B"]] #' ) #' @export `[.mmkin` <- function(x, i, j, ..., drop = FALSE) { class(x) <- NULL x_sub <- x[i, j, drop = drop] if (!drop) class(x_sub) <- "mmkin" return(x_sub) } #' Print method for mmkin objects #' #' @param x An [mmkin] object. #' @param \dots Not used. #' @rdname mmkin #' @export print.mmkin <- function(x, ...) { cat("<mmkin> object\n") cat("Status of individual fits:\n\n") all_summary_warnings <- character() sww <- 0 # Counter for Shapiro-Wilks warnings display <- lapply(x, function(fit) { if (inherits(fit, "try-error")) return("E") sw <- fit$summary_warnings swn <- names(sw) if (length(sw) > 0) { if (any(grepl("S", swn))) { sww <<- sww + 1 swn <- gsub("S", paste0("S", sww), swn) } warnstring <- paste(swn, collapse = ", ") names(sw) <- swn all_summary_warnings <<- c(all_summary_warnings, sw) return(warnstring) } else { return("OK") } }) display <- unlist(display) dim(display) <- dim(x) dimnames(display) <- dimnames(x) print(display, quote = FALSE) cat("\n") if (any(display == "OK")) cat("OK: No warnings\n") if (any(display == "E")) cat("E: Error\n") u_swn <- unique(names(all_summary_warnings)) u_w <- all_summary_warnings[u_swn] for (i in seq_along(u_w)) { cat(names(u_w)[i], ": ", u_w[i], "\n", sep = "") } } #' @export update.mmkin <- function(object, ..., evaluate = TRUE) { call <- attr(object, "call") update_arguments <- match.call(expand.dots = FALSE)$... if (length(update_arguments) > 0) { update_arguments_in_call <- !is.na(match(names(update_arguments), names(call))) } for (a in names(update_arguments)[update_arguments_in_call]) { call[[a]] <- update_arguments[[a]] } update_arguments_not_in_call <- !update_arguments_in_call if(any(update_arguments_not_in_call)) { call <- c(as.list(call), update_arguments[update_arguments_not_in_call]) call <- as.call(call) } if(evaluate) eval(call, parent.frame()) else call }