# Code inspired by nlme::nlme.nlsList and R/nlme_fit.R from nlmixr # We need to assign the degradation function created in nlme.mmkin to an # environment that is always accessible, also e.g. when evaluation is done by # testthat or pkgdown. Therefore parent.frame() is not good enough. The # following environment will be in the mkin namespace. .nlme_env <- new.env(parent = emptyenv()) #' Retrieve a degradation function from the mmkin namespace #' #' @importFrom utils getFromNamespace #' @return A function that was likely previously assigned from within #' nlme.mmkin #' @export get_deg_func <- function() { return(get("deg_func", getFromNamespace(".nlme_env", "mkin"))) } #' Create an nlme model for an mmkin row object #' #' This functions sets up a nonlinear mixed effects model for an mmkin row #' object. An mmkin row object is essentially a list of mkinfit objects that #' have been obtained by fitting the same model to a list of datasets. #' #' @param model An \code{\link{mmkin}} row object. #' @param data Ignored, data are taken from the mmkin model #' @param fixed Ignored, all degradation parameters fitted in the #' mmkin model are used as fixed parameters #' @param random If not specified, all fixed effects are complemented #' with uncorrelated random effects #' @param groups See the documentation of nlme #' @param start If not specified, mean values of the fitted degradation #' parameters taken from the mmkin object are used #' @param correlation See the documentation of nlme #' @param weights passed to nlme #' @param subset passed to nlme #' @param method passed to nlme #' @param na.action passed to nlme #' @param naPattern passed to nlme #' @param control passed to nlme #' @param verbose passed to nlme #' @importFrom stats na.fail as.formula #' @return Upon success, a fitted nlme.mmkin object, which is an nlme object #' with additional elements #' @export #' @seealso \code{\link{nlme_function}} #' @examples #' ds <- lapply(experimental_data_for_UBA_2019[6:10], #' function(x) subset(x$data[c("name", "time", "value")], name == "parent")) #' f <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, cores = 1) #' library(nlme) #' f_nlme_sfo <- nlme(f["SFO", ]) #' f_nlme_dfop <- nlme(f["DFOP", ]) #' AIC(f_nlme_sfo, f_nlme_dfop) #' print(f_nlme_dfop) #' plot(f_nlme_dfop) #' endpoints(f_nlme_dfop) #' \dontrun{ #' f_nlme_2 <- nlme(f["SFO", ], start = c(parent_0 = 100, log_k_parent = 0.1)) #' update(f_nlme_2, random = parent_0 ~ 1) #' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], #' function(x) x$data[c("name", "time", "value")]) #' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), #' A1 = mkinsub("SFO"), use_of_ff = "min", quiet = TRUE) #' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), #' A1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE) #' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), #' A1 = mkinsub("SFO"), quiet = TRUE) #' #' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, #' "SFO-SFO-ff" = m_sfo_sfo_ff, #' "DFOP-SFO" = m_dfop_sfo), #' ds_2, quiet = TRUE) #' #' f_nlme_sfo_sfo <- nlme(f_2["SFO-SFO", ]) #' plot(f_nlme_sfo_sfo) #' #' # With formation fractions #' f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ]) #' plot(f_nlme_sfo_sfo_ff) #' #' # For the following fit we need to increase pnlsMaxIter and the tolerance #' # to get convergence #' f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ], #' control = list(pnlsMaxIter = 120, tolerance = 5e-4), verbose = TRUE) #' #' plot(f_nlme_dfop_sfo) #' #' anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo) #' #' endpoints(f_nlme_sfo_sfo) #' endpoints(f_nlme_dfop_sfo) #' #' if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available #' # Attempts to fit metabolite kinetics with the tc error model are possible, #' # but need tweeking of control values and sometimes do not converge #' #' f_tc <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, error_model = "tc") #' f_nlme_sfo_tc <- nlme(f_tc["SFO", ]) #' f_nlme_dfop_tc <- nlme(f_tc["DFOP", ]) #' AIC(f_nlme_sfo, f_nlme_sfo_tc, f_nlme_dfop, f_nlme_dfop_tc) #' print(f_nlme_dfop_tc) #' } #' f_2_obs <- mmkin(list("SFO-SFO" = m_sfo_sfo, #' "DFOP-SFO" = m_dfop_sfo), #' ds_2, quiet = TRUE, error_model = "obs") #' f_nlme_sfo_sfo_obs <- nlme(f_2_obs["SFO-SFO", ]) #' print(f_nlme_sfo_sfo_obs) #' # The same with DFOP-SFO does not converge, apparently the variances of #' # parent and A1 are too similar in this case, so that the model is #' # overparameterised #' #f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ], control = list(maxIter = 100)) #' } nlme.mmkin <- function(model, data = sys.frame(sys.parent()), fixed, random = fixed, groups, start, correlation = NULL, weights = NULL, subset, method = c("ML", "REML"), na.action = na.fail, naPattern, control = list(), verbose= FALSE) { if (nrow(model) > 1) stop("Only row objects allowed") thisCall <- as.list(match.call())[-1] # Warn in case arguments were used that are overriden if (any(!is.na(match(names(thisCall), c("fixed", "data"))))) { warning("'nlme.mmkin' will redefine 'fixed' and 'data'") } deg_func <- nlme_function(model) assign("deg_func", deg_func, getFromNamespace(".nlme_env", "mkin")) # For the formula, get the degradation function from the mkin namespace this_model_text <- paste0("value ~ mkin::get_deg_func()(", paste(names(formals(deg_func)), collapse = ", "), ")") this_model <- as.formula(this_model_text) thisCall[["model"]] <- this_model mean_dp <- mean_degparms(model) dp_names <- names(mean_dp) thisCall[["data"]] <- nlme_data(model) if (missing(start)) { thisCall[["start"]] <- mean_degparms(model, random = TRUE) } thisCall[["fixed"]] <- lapply(as.list(dp_names), function(el) eval(parse(text = paste(el, 1, sep = "~")))) if (missing(random)) { thisCall[["random"]] <- pdDiag(thisCall[["fixed"]]) } error_model <- model[[1]]$err_mod if (missing(weights)) { thisCall[["weights"]] <- switch(error_model, const = NULL, obs = varIdent(form = ~ 1 | name), tc = varConstProp()) sigma <- switch(error_model, tc = 1, NULL) } control <- thisCall[["control"]] if (error_model == "tc") { control$sigma = 1 thisCall[["control"]] <- control } val <- do.call("nlme.formula", thisCall) val$mmkin_orig <- model val$data <- thisCall[["data"]] val$mkinmod <- model[[1]]$mkinmod class(val) <- c("nlme.mmkin", "nlme", "lme") return(val) } #' @export #' @rdname nlme.mmkin #' @param x An nlme.mmkin object to print #' @param ... Further arguments as in the generic print.nlme.mmkin <- function(x, ...) { x$call$data <- "Not shown" NextMethod("print", x) } #' @export #' @rdname nlme.mmkin #' @param object An nlme.mmkin object to update #' @param ... Update specifications passed to update.nlme update.nlme.mmkin <- function(object, ...) { res <- NextMethod() res$mmkin_orig <- object$mmkin_orig class(res) <- c("nlme.mmkin", "nlme", "lme") return(res) }