utils::globalVariables(c("predicted", "std")) #' Fit nonlinear mixed models with SAEM #' #' This function uses [saemix::saemix()] as a backend for fitting nonlinear mixed #' effects models created from [mmkin] row objects using the Stochastic Approximation #' Expectation Maximisation algorithm (SAEM). #' #' An mmkin row object is essentially a list of mkinfit objects that have been #' obtained by fitting the same model to a list of datasets using [mkinfit]. #' #' Starting values for the fixed effects (population mean parameters, argument #' psi0 of [saemix::saemixModel()] are the mean values of the parameters found #' using [mmkin]. #' #' @importFrom utils packageVersion #' @importFrom saemix saemix #' @param object An [mmkin] row object containing several fits of the same #' [mkinmod] model to different datasets #' @param verbose Should we print information about created objects of #' type [saemix::SaemixModel] and [saemix::SaemixData]? #' @param transformations Per default, all parameter transformations are done #' in mkin. If this argument is set to 'saemix', parameter transformations #' are done in 'saemix' for the supported cases, i.e. (as of version 1.1.2) #' SFO, FOMC, DFOP and HS without fixing `parent_0`, and SFO or DFOP with #' one SFO metabolite. #' @param error_model Possibility to override the error model used in the mmkin object #' @param degparms_start Parameter values given as a named numeric vector will #' be used to override the starting values obtained from the 'mmkin' object. #' @param test_log_parms If TRUE, an attempt is made to use more robust starting #' values for population parameters fitted as log parameters in mkin (like #' rate constants) by only considering rate constants that pass the t-test #' when calculating mean degradation parameters using [mean_degparms]. #' @param conf.level Possibility to adjust the required confidence level #' for parameter that are tested if requested by 'test_log_parms'. #' @param solution_type Possibility to specify the solution type in case the #' automatic choice is not desired #' @param no_random_effect Character vector of degradation parameters for #' which there should be no variability over the groups. Only used #' if the covariance model is not explicitly specified. #' @param covariance.model Will be passed to [saemix::saemixModel()]. Per #' default, uncorrelated random effects are specified for all degradation #' parameters. #' @param omega.init Will be passed to [saemix::saemixModel()]. If using #' mkin transformations and the default covariance model with optionally #' excluded random effects, the variances of the degradation parameters #' are estimated using [mean_degparms], with testing of untransformed #' log parameters for significant difference from zero. If not using #' mkin transformations or a custom covariance model, the default #' initialisation of [saemix::saemixModel] is used for omega.init. #' @param covariates A data frame with covariate data for use in #' 'covariate_models', with dataset names as row names. #' @param covariate_models A list containing linear model formulas with one explanatory #' variable, i.e. of the type 'parameter ~ covariate'. Covariates must be available #' in the 'covariates' data frame. #' @param error.init Will be passed to [saemix::saemixModel()]. #' @param quiet Should we suppress the messages saemix prints at the beginning #' and the end of the optimisation process? #' @param nbiter.saemix Convenience option to increase the number of #' iterations #' @param control Passed to [saemix::saemix]. #' @param \dots Further parameters passed to [saemix::saemixModel]. #' @return An S3 object of class 'saem.mmkin', containing the fitted #' [saemix::SaemixObject] as a list component named 'so'. The #' object also inherits from 'mixed.mmkin'. #' @seealso [summary.saem.mmkin] [plot.mixed.mmkin] #' @examples #' \dontrun{ #' ds <- lapply(experimental_data_for_UBA_2019[6:10], #' function(x) subset(x$data[c("name", "time", "value")])) #' names(ds) <- paste("Dataset", 6:10) #' f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds, #' state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE) #' f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed) #' #' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE) #' f_saem_sfo <- saem(f_mmkin_parent["SFO", ]) #' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ]) #' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ]) #' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop) #' anova(f_saem_sfo, f_saem_dfop, test = TRUE) #' illparms(f_saem_dfop) #' f_saem_dfop_red <- update(f_saem_dfop, no_random_effect = "g_qlogis") #' anova(f_saem_dfop, f_saem_dfop_red, test = TRUE) #' #' anova(f_saem_sfo, f_saem_fomc, f_saem_dfop) #' # The returned saem.mmkin object contains an SaemixObject, therefore we can use #' # functions from saemix #' library(saemix) #' compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so) #' plot(f_saem_fomc$so, plot.type = "convergence") #' plot(f_saem_fomc$so, plot.type = "individual.fit") #' plot(f_saem_fomc$so, plot.type = "npde") #' plot(f_saem_fomc$so, plot.type = "vpc") #' #' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc") #' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ]) #' anova(f_saem_fomc, f_saem_fomc_tc, test = TRUE) #' #' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), #' A1 = mkinsub("SFO")) #' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), #' A1 = mkinsub("SFO")) #' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), #' A1 = mkinsub("SFO")) #' # The following fit uses analytical solutions for SFO-SFO and DFOP-SFO, #' # and compiled ODEs for FOMC that are much slower #' f_mmkin <- mmkin(list( #' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo), #' ds, quiet = TRUE) #' # saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds #' # each on this system, as we use analytical solutions written for saemix. #' # When using the analytical solutions written for mkin this took around #' # four minutes #' f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ]) #' f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ]) #' # We can use print, plot and summary methods to check the results #' print(f_saem_dfop_sfo) #' plot(f_saem_dfop_sfo) #' summary(f_saem_dfop_sfo, data = TRUE) #' #' # The following takes about 6 minutes #' f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve", #' nbiter.saemix = c(200, 80)) #' #' #anova( #' # f_saem_dfop_sfo, #' # f_saem_dfop_sfo_deSolve)) #' #' # If the model supports it, we can also use eigenvalue based solutions, which #' # take a similar amount of time #' #f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen", #' # control = list(nbiter.saemix = c(200, 80), nbdisplay = 10)) #' } #' @export saem <- function(object, ...) UseMethod("saem") #' @rdname saem #' @export saem.mmkin <- function(object, transformations = c("mkin", "saemix"), error_model = "auto", degparms_start = numeric(), test_log_parms = TRUE, conf.level = 0.6, solution_type = "auto", covariance.model = "auto", omega.init = "auto", covariates = NULL, covariate_models = NULL, no_random_effect = NULL, error.init = c(1, 1), nbiter.saemix = c(300, 100), control = list(displayProgress = FALSE, print = FALSE, nbiter.saemix = nbiter.saemix, save = FALSE, save.graphs = FALSE), verbose = FALSE, quiet = FALSE, ...) { call <- match.call() transformations <- match.arg(transformations) m_saemix <- saemix_model(object, verbose = verbose, error_model = error_model, degparms_start = degparms_start, test_log_parms = test_log_parms, conf.level = conf.level, solution_type = solution_type, transformations = transformations, covariance.model = covariance.model, omega.init = omega.init, covariates = covariates, covariate_models = covariate_models, error.init = error.init, no_random_effect = no_random_effect, ...) d_saemix <- saemix_data(object, covariates = covariates, verbose = verbose) fit_failed <- FALSE FIM_failed <- NULL fit_time <- system.time({ utils::capture.output(f_saemix <- try(saemix(m_saemix, d_saemix, control)), split = !quiet) if (inherits(f_saemix, "try-error")) fit_failed <- TRUE }) return_data <- nlme_data(object) if (!fit_failed) { if (any(is.na(f_saemix@results@se.fixed))) FIM_failed <- c(FIM_failed, "fixed effects") if (any(is.na(c(f_saemix@results@se.omega, f_saemix@results@se.respar)))) { FIM_failed <- c(FIM_failed, "random effects and error model parameters") } transparms_optim <- f_saemix@results@fixed.effects names(transparms_optim) <- f_saemix@results@name.fixed if (transformations == "mkin") { bparms_optim <- backtransform_odeparms(transparms_optim, object[[1]]$mkinmod, object[[1]]$transform_rates, object[[1]]$transform_fractions) } else { bparms_optim <- transparms_optim } saemix_data_ds <- f_saemix@data@data$ds mkin_ds_order <- as.character(unique(return_data$ds)) saemix_ds_order <- unique(saemix_data_ds) psi <- saemix::psi(f_saemix) rownames(psi) <- saemix_ds_order return_data$predicted <- f_saemix@model@model( psi = psi[mkin_ds_order, ], id = as.numeric(return_data$ds), xidep = return_data[c("time", "name")]) return_data <- transform(return_data, residual = value - predicted, std = sigma_twocomp(predicted, f_saemix@results@respar[1], f_saemix@results@respar[2])) return_data <- transform(return_data, standardized = residual / std) } result <- list( mkinmod = object[[1]]$mkinmod, mmkin = object, solution_type = object[[1]]$solution_type, transformations = transformations, transform_rates = object[[1]]$transform_rates, transform_fractions = object[[1]]$transform_fractions, covariates = covariates, covariate_models = covariate_models, sm = m_saemix, so = f_saemix, call = call, time = fit_time, FIM_failed = FIM_failed, mean_dp_start = attr(m_saemix, "mean_dp_start"), bparms.fixed = object[[1]]$bparms.fixed, data = return_data, err_mod = object[[1]]$err_mod, date.fit = date(), saemixversion = as.character(utils::packageVersion("saemix")), mkinversion = as.character(utils::packageVersion("mkin")), Rversion = paste(R.version$major, R.version$minor, sep=".") ) if (!fit_failed) { result$mkin_ds_order <- mkin_ds_order result$saemix_ds_order <- saemix_ds_order result$bparms.optim <- bparms_optim } class(result) <- c("saem.mmkin", "mixed.mmkin") return(result) } #' @export #' @rdname saem #' @param x An saem.mmkin object to print #' @param digits Number of digits to use for printing print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat( "Kinetic nonlinear mixed-effects model fit by SAEM" ) cat("\nStructural model:\n") diffs <- x$mmkin[[1]]$mkinmod$diffs nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs) writeLines(strwrap(nice_diffs, exdent = 11)) cat("\nData:\n") cat(nrow(x$data), "observations of", length(unique(x$data$name)), "variable(s) grouped in", length(unique(x$data$ds)), "datasets\n") if (inherits(x$so, "try-error")) { cat("\nFit did not terminate successfully\n") } else { cat("\nLikelihood computed by importance sampling\n") ll <- try(logLik(x$so, type = "is"), silent = TRUE) if (inherits(ll, "try-error")) { cat("Not available\n") } else { print(data.frame( AIC = AIC(x$so, type = "is"), BIC = BIC(x$so, type = "is"), logLik = logLik(x$so, type = "is"), row.names = " "), digits = digits) } cat("\nFitted parameters:\n") conf.int <- parms(x, ci = TRUE) print(conf.int, digits = digits) } invisible(x) } #' @rdname saem #' @return An [saemix::SaemixModel] object. #' @export saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"), error_model = "auto", degparms_start = numeric(), covariance.model = "auto", no_random_effect = NULL, omega.init = "auto", covariates = NULL, covariate_models = NULL, error.init = numeric(), test_log_parms = FALSE, conf.level = 0.6, verbose = FALSE, ...) { if (nrow(object) > 1) stop("Only row objects allowed") mkin_model <- object[[1]]$mkinmod if (length(mkin_model$spec) > 1 & solution_type[1] == "analytical") { stop("mkin analytical solutions not supported for more thane one observed variable") } degparms_optim <- mean_degparms(object, test_log_parms = test_log_parms) na_degparms <- names(which(is.na(degparms_optim))) if (length(na_degparms) > 0) { message("Did not find valid starting values for ", paste(na_degparms, collapse = ", "), "\n", "Now trying with test_log_parms = FALSE") degparms_optim <- mean_degparms(object, test_log_parms = FALSE) } if (transformations == "saemix") { degparms_optim <- backtransform_odeparms(degparms_optim, object[[1]]$mkinmod, object[[1]]$transform_rates, object[[1]]$transform_fractions) } degparms_fixed <- object[[1]]$bparms.fixed # Transformations are done in the degradation function by default # (transformations = "mkin") transform.par = rep(0, length(degparms_optim)) odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE) odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE) odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names) odeparms_fixed <- degparms_fixed[odeparms_fixed_names] odeini_fixed <- degparms_fixed[odeini_fixed_parm_names] names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names) model_function <- FALSE # Model functions with analytical solutions # Fixed parameters, use_of_ff = "min" and turning off sinks currently not supported here # In general, we need to consider exactly how the parameters in mkinfit were specified, # as the parameters are currently mapped by position in these solutions sinks <- sapply(mkin_model$spec, function(x) x$sink) if (length(odeparms_fixed) == 0 & mkin_model$use_of_ff == "max" & all(sinks)) { # Parent only if (length(mkin_model$spec) == 1) { parent_type <- mkin_model$spec[[1]]$type if (length(odeini_fixed) == 1 && !grepl("_bound$", names(odeini_fixed))) { if (transformations == "saemix") { stop("saemix transformations are not supported for parent fits with fixed initial parent value") } if (parent_type == "SFO") { stop("saemix needs at least two parameters to work on.") } if (parent_type == "FOMC") { model_function <- function(psi, id, xidep) { odeini_fixed / (xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, 1]) } } if (parent_type == "DFOP") { model_function <- function(psi, id, xidep) { g <- plogis(psi[id, 3]) t <- xidep[, "time"] odeini_fixed * (g * exp(- exp(psi[id, 1]) * t) + (1 - g) * exp(- exp(psi[id, 2]) * t)) } } if (parent_type == "HS") { model_function <- function(psi, id, xidep) { tb <- exp(psi[id, 3]) t <- xidep[, "time"] k1 = exp(psi[id, 1]) odeini_fixed * ifelse(t <= tb, exp(- k1 * t), exp(- k1 * tb) * exp(- exp(psi[id, 2]) * (t - tb))) } } } else { if (length(odeini_fixed) == 2) { stop("SFORB with fixed initial parent value is not supported") } if (parent_type == "SFO") { if (transformations == "mkin") { model_function <- function(psi, id, xidep) { psi[id, 1] * exp( - exp(psi[id, 2]) * xidep[, "time"]) } } else { model_function <- function(psi, id, xidep) { psi[id, 1] * exp( - psi[id, 2] * xidep[, "time"]) } transform.par = c(0, 1) } } if (parent_type == "FOMC") { if (transformations == "mkin") { model_function <- function(psi, id, xidep) { psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2]) } } else { model_function <- function(psi, id, xidep) { psi[id, 1] / (xidep[, "time"]/psi[id, 3] + 1)^psi[id, 2] } transform.par = c(0, 1, 1) } } if (parent_type == "DFOP") { if (transformations == "mkin") { model_function <- function(psi, id, xidep) { g <- plogis(psi[id, 4]) t <- xidep[, "time"] psi[id, 1] * (g * exp(- exp(psi[id, 2]) * t) + (1 - g) * exp(- exp(psi[id, 3]) * t)) } } else { model_function <- function(psi, id, xidep) { g <- psi[id, 4] t <- xidep[, "time"] psi[id, 1] * (g * exp(- psi[id, 2] * t) + (1 - g) * exp(- psi[id, 3] * t)) } transform.par = c(0, 1, 1, 3) } } if (parent_type == "SFORB") { if (transformations == "mkin") { model_function <- function(psi, id, xidep) { k_12 <- exp(psi[id, 3]) k_21 <- exp(psi[id, 4]) k_1output <- exp(psi[id, 2]) t <- xidep[, "time"] sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 - k_1output * k_21) b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) + ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t)) } } else { model_function <- function(psi, id, xidep) { k_12 <- psi[id, 3] k_21 <- psi[id, 4] k_1output <- psi[id, 2] t <- xidep[, "time"] sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 - k_1output * k_21) b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp psi[id, 1] * (((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) + ((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t)) } transform.par = c(0, 1, 1, 1) } } if (parent_type == "HS") { if (transformations == "mkin") { model_function <- function(psi, id, xidep) { tb <- exp(psi[id, 4]) t <- xidep[, "time"] k1 <- exp(psi[id, 2]) psi[id, 1] * ifelse(t <= tb, exp(- k1 * t), exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb))) } } else { model_function <- function(psi, id, xidep) { tb <- psi[id, 4] t <- xidep[, "time"] psi[id, 1] * ifelse(t <= tb, exp(- psi[id, 2] * t), exp(- psi[id, 2] * tb) * exp(- psi[id, 3] * (t - tb))) } transform.par = c(0, 1, 1, 1) } } } } # Parent with one metabolite # Parameter names used in the model functions are as in # https://nbviewer.jupyter.org/urls/jrwb.de/nb/Symbolic%20ODE%20solutions%20for%20mkin.ipynb types <- unname(sapply(mkin_model$spec, function(x) x$type)) if (length(mkin_model$spec) == 2 &! "SFORB" %in% types ) { # Initial value for the metabolite (n20) must be fixed if (names(odeini_fixed) == names(mkin_model$spec)[2]) { n20 <- odeini_fixed parent_name <- names(mkin_model$spec)[1] if (identical(types, c("SFO", "SFO"))) { if (transformations == "mkin") { model_function <- function(psi, id, xidep) { t <- xidep[, "time"] n10 <- psi[id, 1] k1 <- exp(psi[id, 2]) k2 <- exp(psi[id, 3]) f12 <- plogis(psi[id, 4]) ifelse(xidep[, "name"] == parent_name, n10 * exp(- k1 * t), (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) + (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1) ) } } else { model_function <- function(psi, id, xidep) { t <- xidep[, "time"] n10 <- psi[id, 1] k1 <- psi[id, 2] k2 <- psi[id, 3] f12 <- psi[id, 4] ifelse(xidep[, "name"] == parent_name, n10 * exp(- k1 * t), (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) + (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1) ) } transform.par = c(0, 1, 1, 3) } } if (identical(types, c("DFOP", "SFO"))) { if (transformations == "mkin") { model_function <- function(psi, id, xidep) { t <- xidep[, "time"] n10 <- psi[id, 1] k2 <- exp(psi[id, 2]) f12 <- plogis(psi[id, 3]) l1 <- exp(psi[id, 4]) l2 <- exp(psi[id, 5]) g <- plogis(psi[id, 6]) ifelse(xidep[, "name"] == parent_name, n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)), ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) - (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) + ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 + ((f12 * l1 + (f12 * g - f12) * k2) * l2 - f12 * g * k2 * l1) * n10) * exp( - k2 * t)) / ((l1 - k2) * l2 - k2 * l1 + k2^2) ) } } else { model_function <- function(psi, id, xidep) { t <- xidep[, "time"] n10 <- psi[id, 1] k2 <- psi[id, 2] f12 <- psi[id, 3] l1 <- psi[id, 4] l2 <- psi[id, 5] g <- psi[id, 6] ifelse(xidep[, "name"] == parent_name, n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)), ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) - (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) + ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 + ((f12 * l1 + (f12 * g - f12) * k2) * l2 - f12 * g * k2 * l1) * n10) * exp( - k2 * t)) / ((l1 - k2) * l2 - k2 * l1 + k2^2) ) } transform.par = c(0, 1, 3, 1, 1, 3) } } } } } if (is.function(model_function) & solution_type == "auto") { solution_type = "analytical saemix" } else { if (transformations == "saemix") { stop("Using saemix transformations is only supported if an analytical solution is implemented for saemix") } if (solution_type == "auto") solution_type <- object[[1]]$solution_type # Define some variables to avoid function calls in model function transparms_optim_names <- names(degparms_optim) odeini_optim_names <- gsub('_0$', '', odeini_optim_parm_names) diff_names <- names(mkin_model$diffs) ode_transparms_optim_names <- setdiff(transparms_optim_names, odeini_optim_parm_names) transform_rates <- object[[1]]$transform_rates transform_fractions <- object[[1]]$transform_fractions # Get native symbol info for speed use_symbols = FALSE if (solution_type == "deSolve" & !is.null(mkin_model$cf)) { mkin_model$symbols <- try(deSolve::checkDLL( dllname = mkin_model$dll_info[["name"]], func = "diffs", initfunc = "initpar", jacfunc = NULL, nout = 0, outnames = NULL)) if (!inherits(mkin_model$symbols, "try-error")) { use_symbols = TRUE } } # Define the model function model_function <- function(psi, id, xidep) { uid <- unique(id) res_list <- lapply(uid, function(i) { transparms_optim <- as.numeric(psi[i, ]) # psi[i, ] is a dataframe when called in saemix.predict names(transparms_optim) <- transparms_optim_names odeini_optim <- transparms_optim[odeini_optim_parm_names] names(odeini_optim) <- odeini_optim_names odeini <- c(odeini_optim, odeini_fixed)[diff_names] odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model, transform_rates = transform_rates, transform_fractions = transform_fractions) odeparms <- c(odeparms_optim, odeparms_fixed) xidep_i <- xidep[which(id == i), ] if (solution_type[1] == "analytical") { out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms) } else { i_time <- xidep_i$time i_name <- xidep_i$name out_wide <- mkinpredict(mkin_model, odeparms = odeparms, odeini = odeini, solution_type = solution_type, outtimes = sort(unique(i_time)), na_stop = FALSE ) out_index <- cbind(as.character(i_time), as.character(i_name)) out_values <- out_wide[out_index] } return(out_values) }) res <- unlist(res_list) return(res) } } if (identical(error_model, "auto")) { error_model = object[[1]]$err_mod } error.model <- switch(error_model, const = "constant", tc = "combined", obs = "constant") if (error_model == "obs") { warning("The error model 'obs' (variance by variable) can currently not be transferred to an saemix model") } degparms_psi0 <- degparms_optim degparms_psi0[names(degparms_start)] <- degparms_start psi0_matrix <- matrix(degparms_psi0, nrow = 1, dimnames = list("(Intercept)", names(degparms_psi0))) if (covariance.model[1] == "auto") { covariance_diagonal <- rep(1, length(degparms_optim)) if (!is.null(no_random_effect)) { degparms_no_random <- which(names(degparms_psi0) %in% no_random_effect) covariance_diagonal[degparms_no_random] <- 0 } covariance.model = diag(covariance_diagonal) } if (omega.init[1] == "auto") { if (transformations == "mkin") { degparms_eta_ini <- as.numeric( # remove names mean_degparms(object, random = TRUE, test_log_parms = TRUE)$eta) omega.init <- 2 * diag(degparms_eta_ini^2) } else { omega.init <- matrix(nrow = 0, ncol = 0) } } if (is.null(covariate_models)) { covariate.model <- matrix(nrow = 0, ncol = 0) # default in saemixModel() } else { degparms_dependent <- sapply(covariate_models, function(x) as.character(x[[2]])) covariates_in_models = unique(unlist(lapply( covariate_models, function(x) colnames(attr(terms(x), "factors")) ))) covariates_not_available <- setdiff(covariates_in_models, names(covariates)) if (length(covariates_not_available) > 0) { stop("Covariate(s) ", paste(covariates_not_available, collapse = ", "), " used in the covariate models not available in the covariate data") } psi0_matrix <- rbind(psi0_matrix, matrix(0, nrow = length(covariates), ncol = ncol(psi0_matrix), dimnames = list(names(covariates), colnames(psi0_matrix)))) covariate.model <- matrix(0, nrow = length(covariates), ncol = ncol(psi0_matrix), dimnames = list( covariates = names(covariates), degparms = colnames(psi0_matrix))) if (transformations == "saemix") { stop("Covariate models with saemix transformations currently not supported") } parms_trans <- as.data.frame(t(sapply(object, parms, transformed = TRUE))) for (covariate_model in covariate_models) { covariate_name <- as.character(covariate_model[[2]]) model_data <- cbind(parms_trans, covariates) ini_model <- lm(covariate_model, data = model_data) ini_coef <- coef(ini_model) psi0_matrix[names(ini_coef), covariate_name] <- ini_coef covariate.model[names(ini_coef)[-1], covariate_name] <- as.numeric(as.logical(ini_coef[-1])) } } res <- saemix::saemixModel(model_function, psi0 = psi0_matrix, "Mixed model generated from mmkin object", transform.par = transform.par, error.model = error.model, verbose = verbose, covariance.model = covariance.model, covariate.model = covariate.model, omega.init = omega.init, error.init = error.init, ... ) attr(res, "mean_dp_start") <- degparms_optim return(res) } #' @rdname saem #' @importFrom rlang !!! #' @return An [saemix::SaemixData] object. #' @export saemix_data <- function(object, covariates = NULL, verbose = FALSE, ...) { if (nrow(object) > 1) stop("Only row objects allowed") ds_names <- colnames(object) ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")]) names(ds_list) <- ds_names ds_saemix_all <- vctrs::vec_rbind(!!!ds_list, .names_to = "ds") ds_saemix <- data.frame(ds = ds_saemix_all$ds, name = as.character(ds_saemix_all$variable), time = ds_saemix_all$time, value = ds_saemix_all$observed, stringsAsFactors = FALSE) if (!is.null(covariates)) { name.covariates <- names(covariates) covariates$ds <- rownames(covariates) ds_saemix <- merge(ds_saemix, covariates, sort = FALSE) } else { name.covariates <- character(0) } res <- saemix::saemixData(ds_saemix, name.group = "ds", name.predictors = c("time", "name"), name.response = "value", name.covariates = name.covariates, verbose = verbose, ...) return(res) } #' logLik method for saem.mmkin objects #' #' @param object The fitted [saem.mmkin] object #' @param \dots Passed to [saemix::logLik.SaemixObject] #' @param method Passed to [saemix::logLik.SaemixObject] #' @export logLik.saem.mmkin <- function(object, ..., method = c("is", "lin", "gq")) { method <- match.arg(method) return(logLik(object$so, method = method)) } #' @export update.saem.mmkin <- function(object, ..., evaluate = TRUE) { call <- object$call # For some reason we get saem.mmkin in the call when using mhmkin # so we need to fix this so we do not have to export saem.mmkin in # addition to the S3 method call[[1]] <- saem # We also need to provide the mmkin object in the call, so it # will also be found when called by testthat or pkgdown call[[2]] <- object$mmkin update_arguments <- match.call(expand.dots = FALSE)$... if (length(update_arguments) > 0) { update_arguments_in_call <- !is.na(match(names(update_arguments), names(call))) } for (a in names(update_arguments)[update_arguments_in_call]) { call[[a]] <- update_arguments[[a]] } update_arguments_not_in_call <- !update_arguments_in_call if(any(update_arguments_not_in_call)) { call <- c(as.list(call), update_arguments[update_arguments_not_in_call]) call <- as.call(call) } if(evaluate) eval(call, parent.frame()) else call } #' @export #' @rdname parms #' @param ci Should a matrix with estimates and confidence interval boundaries #' be returned? If FALSE (default), a vector of estimates is returned if no #' covariates are given, otherwise a matrix of estimates is returned, with #' each column corresponding to a row of the data frame holding the covariates #' @param covariates A data frame holding covariate values for which to #' return parameter values. Only has an effect if 'ci' is FALSE. parms.saem.mmkin <- function(object, ci = FALSE, covariates = NULL, ...) { cov.mod <- object$sm@covariance.model n_cov_mod_parms <- sum(cov.mod[upper.tri(cov.mod, diag = TRUE)]) n_parms <- length(object$sm@name.modpar) + n_cov_mod_parms + length(object$sm@name.sigma) if (inherits(object$so, "try-error")) { conf.int <- matrix(rep(NA, 3 * n_parms), ncol = 3) colnames(conf.int) <- c("estimate", "lower", "upper") } else { conf.int <- object$so@results@conf.int[c("estimate", "lower", "upper")] rownames(conf.int) <- object$so@results@conf.int[["name"]] conf.int.var <- grepl("^Var\\.", rownames(conf.int)) conf.int <- conf.int[!conf.int.var, ] conf.int.cov <- grepl("^Cov\\.", rownames(conf.int)) conf.int <- conf.int[!conf.int.cov, ] } estimate <- conf.int[, "estimate"] names(estimate) <- rownames(conf.int) if (ci) { return(conf.int) } else { if (is.null(covariates)) { return(estimate) } else { est_for_cov <- matrix(NA, nrow = length(object$sm@name.modpar), ncol = nrow(covariates), dimnames = (list(object$sm@name.modpar, rownames(covariates)))) covmods <- object$covariate_models names(covmods) <- sapply(covmods, function(x) as.character(x[[2]])) for (deg_parm_name in rownames(est_for_cov)) { if (deg_parm_name %in% names(covmods)) { covariate <- covmods[[deg_parm_name]][[3]] beta_degparm_name <- paste0("beta_", covariate, "(", deg_parm_name, ")") est_for_cov[deg_parm_name, ] <- estimate[deg_parm_name] + covariates[[covariate]] * estimate[beta_degparm_name] } else { est_for_cov[deg_parm_name, ] <- estimate[deg_parm_name] } } return(est_for_cov) } } }