#' Two-component error model #' #' Function describing the standard deviation of the measurement error in #' dependence of the measured value \eqn{y}: #' #' \deqn{\sigma = \sqrt{ \sigma_{low}^2 + y^2 * {rsd}_{high}^2}} sigma = #' sqrt(sigma_low^2 + y^2 * rsd_high^2) #' #' This is the error model used for example by Werner et al. (1978). The model #' proposed by Rocke and Lorenzato (1995) can be written in this form as well, #' but assumes approximate lognormal distribution of errors for high values of #' y. #' #' @param y The magnitude of the observed value #' @param sigma_low The asymptotic minimum of the standard deviation for low #' observed values #' @param rsd_high The coefficient describing the increase of the standard #' deviation with the magnitude of the observed value #' @return The standard deviation of the response variable. #' @references Werner, Mario, Brooks, Samuel H., and Knott, Lancaster B. (1978) #' Additive, Multiplicative, and Mixed Analytical Errors. Clinical Chemistry #' 24(11), 1895-1898. #' #' Rocke, David M. and Lorenzato, Stefan (1995) A two-component model for #' measurement error in analytical chemistry. Technometrics 37(2), 176-184. #' @export sigma_twocomp <- function(y, sigma_low, rsd_high) { sqrt(sigma_low^2 + y^2 * rsd_high^2) }