The datasets were extracted from the active substance evaluation dossier published by EFSA. Kinetic evaluations shown for these datasets are intended to illustrate and advance kinetic modelling. The fact that these data and some results are shown here does not imply a license to use them in the context of pesticide registrations, as the use of the data may be constrained by data protection regulations.

dimethenamid_2018

Format

An mkindsg object grouping seven datasets with some meta information

Source

Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018) Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour Rev. 2 - November 2017 https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716

Details

The R code used to create this data object is installed with this package in the 'dataset_generation' directory. In the code, page numbers are given for specific pieces of information in the comments.

Examples

print(dimethenamid_2018)
#> <mkindsg> holding 7 mkinds objects #> Title $title: Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018 #> Occurrence of observed compounds $observed_n: #> DMTAP M23 M27 M31 DMTA #> 3 7 7 7 4 #> Time normalisation factors $f_time_norm: #> [1] 1.0000000 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922 0.6733938 #> Meta information $meta: #> study usda_soil_type study_moisture_ref_type rel_moisture #> Calke Unsworth 2014 Sandy loam pF2 1.00 #> Borstel Staudenmaier 2009 Sand pF1 0.50 #> Elliot 1 Wendt 1997 Clay loam pF2.5 0.75 #> Elliot 2 Wendt 1997 Clay loam pF2.5 0.75 #> Flaach König 1996 Sandy clay loam pF1 0.40 #> BBA 2.2 König 1995 Loamy sand pF1 0.40 #> BBA 2.3 König 1995 Sandy loam pF1 0.40 #> study_ref_moisture temperature #> Calke NA 20 #> Borstel 23.00 20 #> Elliot 1 33.37 23 #> Elliot 2 33.37 23 #> Flaach NA 20 #> BBA 2.2 NA 20 #> BBA 2.3 NA 20
dmta_ds <- lapply(1:7, function(i) { ds_i <- dimethenamid_2018$ds[[i]]$data ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA" ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] ds_i }) names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title) dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) dmta_ds[["Elliot 1"]] <- NULL dmta_ds[["Elliot 2"]] <- NULL # \dontrun{ dfop_sfo3_plus <- mkinmod( DMTA = mkinsub("DFOP", c("M23", "M27", "M31")), M23 = mkinsub("SFO"), M27 = mkinsub("SFO"), M31 = mkinsub("SFO", "M27", sink = FALSE), quiet = TRUE ) f_dmta_mkin_tc <- mmkin( list("DFOP-SFO3+" = dfop_sfo3_plus), dmta_ds, quiet = TRUE, error_model = "tc") nlmixr_model(f_dmta_mkin_tc)
#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
#> Warning: number of items to replace is not a multiple of replacement length
#> function () #> { #> ini({ #> DMTA_0 = 98.7132391714013 #> eta.DMTA_0 ~ 2.32692496033921 #> log_k_M23 = -3.92162409637283 #> eta.log_k_M23 ~ 0.549278519419884 #> log_k_M27 = -4.33057580082049 #> eta.log_k_M27 ~ 0.855184233768426 #> log_k_M31 = -4.24415516780733 #> eta.log_k_M31 ~ 0.745746058085877 #> log_k1 = -2.23515804885306 #> eta.log_k1 ~ 0.901033446532357 #> log_k2 = -3.77581484944379 #> eta.log_k2 ~ 1.57682329638124 #> g_qlogis = 0.436302910942805 #> eta.g_qlogis ~ 3.10190528862808 #> f_DMTA_tffm0_1_qlogis = -2.0914852208395 #> eta.f_DMTA_tffm0_1_qlogis ~ 0.3 #> f_DMTA_tffm0_2_qlogis = -2.17879574608926 #> eta.f_DMTA_tffm0_2_qlogis ~ 0.3 #> f_DMTA_tffm0_3_qlogis = -2.14036526460782 #> eta.f_DMTA_tffm0_3_qlogis ~ 0.3 #> sigma_low_DMTA = 0.700117227383809 #> rsd_high_DMTA = 0.0257724286053519 #> sigma_low_M23 = 0.700117227383809 #> rsd_high_M23 = 0.0257724286053519 #> sigma_low_M27 = 0.700117227383809 #> rsd_high_M27 = 0.0257724286053519 #> sigma_low_M31 = 0.700117227383809 #> rsd_high_M31 = 0.0257724286053519 #> }) #> model({ #> DMTA_0_model = DMTA_0 + eta.DMTA_0 #> DMTA(0) = DMTA_0_model #> k_M23 = exp(log_k_M23 + eta.log_k_M23) #> k_M27 = exp(log_k_M27 + eta.log_k_M27) #> k_M31 = exp(log_k_M31 + eta.log_k_M31) #> k1 = exp(log_k1 + eta.log_k1) #> k2 = exp(log_k2 + eta.log_k2) #> g = expit(g_qlogis + eta.g_qlogis) #> f_DMTA_to_M23 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis) #> f_DMTA_to_M23 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis) #> f_DMTA_to_M23 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis) #> f_DMTA_to_M23 = f_DMTA_tffm0_1 #> f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1) #> f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) * #> (1 - f_DMTA_tffm0_1) #> d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 - #> g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 - #> g) * exp(-k2 * time))) * DMTA #> d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + #> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + #> (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23 #> d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + #> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + #> (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 + #> k_M31 * M31 #> d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + #> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + #> (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31 #> DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA) #> M23 ~ add(sigma_low_M23) + prop(rsd_high_M23) #> M27 ~ add(sigma_low_M27) + prop(rsd_high_M27) #> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31) #> }) #> } #> <environment: 0x555559d89920>
# The focei fit takes about four minutes on my system system.time( f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei", control = nlmixr::foceiControl(print = 500)) )
#> Warning: number of items to replace is not a multiple of replacement length
#> parameter labels from comments are typically ignored in non-interactive mode
#> Need to run with the source intact to parse comments
#> → creating full model...
#> → pruning branches (`if`/`else`)...
#> done
#> → loading into symengine environment...
#> done
#> → creating full model...
#> → pruning branches (`if`/`else`)...
#> done
#> → loading into symengine environment...
#> done
#> → calculate jacobian
#> [====|====|====|====|====|====|====|====|====|====] 0:00:02 #>
#> → calculate sensitivities
#> [====|====|====|====|====|====|====|====|====|====] 0:00:04 #>
#> → calculate ∂(f)/∂(η)
#> [====|====|====|====|====|====|====|====|====|====] 0:00:01 #>
#> → calculate ∂(R²)/∂(η)
#> [====|====|====|====|====|====|====|====|====|====] 0:00:09 #>
#> → finding duplicate expressions in inner model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:07 #>
#> → optimizing duplicate expressions in inner model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:06 #>
#> → finding duplicate expressions in EBE model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #>
#> → optimizing duplicate expressions in EBE model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00 #>
#> → compiling inner model...
#>
#> done
#> → finding duplicate expressions in FD model...
#>
#> → optimizing duplicate expressions in FD model...
#>
#> → compiling EBE model...
#>
#> done
#> → compiling events FD model...
#>
#> done
#> Model:
#> cmt(DMTA); #> cmt(M23); #> cmt(M27); #> cmt(M31); #> rx_expr_14~ETA[1]+THETA[1]; #> DMTA(0)=rx_expr_14; #> rx_expr_15~ETA[5]+THETA[5]; #> rx_expr_16~ETA[7]+THETA[7]; #> rx_expr_17~ETA[6]+THETA[6]; #> rx_expr_24~exp(rx_expr_15); #> rx_expr_25~exp(rx_expr_17); #> rx_expr_29~t*rx_expr_24; #> rx_expr_30~t*rx_expr_25; #> rx_expr_31~exp(-(rx_expr_16)); #> rx_expr_35~1+rx_expr_31; #> rx_expr_40~1/(rx_expr_35); #> rx_expr_42~(rx_expr_40); #> rx_expr_43~1-rx_expr_42; #> d/dt(DMTA)=-DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43)); #> rx_expr_18~ETA[2]+THETA[2]; #> rx_expr_26~exp(rx_expr_18); #> d/dt(M23)=-rx_expr_26*M23+DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_1/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43)); #> rx_expr_19~ETA[3]+THETA[3]; #> rx_expr_20~ETA[4]+THETA[4]; #> rx_expr_21~1-f_DMTA_tffm0_1; #> rx_expr_27~exp(rx_expr_19); #> rx_expr_28~exp(rx_expr_20); #> d/dt(M27)=-rx_expr_27*M27+rx_expr_28*M31+DMTA*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_2/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43)); #> rx_expr_22~1-f_DMTA_tffm0_2; #> d/dt(M31)=-rx_expr_28*M31+DMTA*(rx_expr_22)*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_3/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43)); #> rx_expr_0~CMT==4; #> rx_expr_1~CMT==2; #> rx_expr_2~CMT==1; #> rx_expr_3~CMT==3; #> rx_expr_4~1-(rx_expr_0); #> rx_expr_5~1-(rx_expr_1); #> rx_expr_6~1-(rx_expr_3); #> rx_yj_~(rx_expr_4)*((2*(rx_expr_5)*(rx_expr_2)+2*(rx_expr_1))*(rx_expr_6)+2*(rx_expr_3))+2*(rx_expr_0); #> rx_expr_7~(rx_expr_1); #> rx_expr_8~(rx_expr_3); #> rx_expr_9~(rx_expr_0); #> rx_expr_13~(rx_expr_5); #> rx_expr_32~rx_expr_13*(rx_expr_2); #> rx_lambda_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9; #> rx_hi_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9; #> rx_low_~0; #> rx_expr_10~M31*(rx_expr_0); #> rx_expr_11~M27*(rx_expr_3); #> rx_expr_12~M23*(rx_expr_1); #> rx_expr_23~DMTA*(rx_expr_5); #> rx_expr_36~rx_expr_23*(rx_expr_2); #> rx_pred_=(rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6))); #> rx_expr_33~Rx_pow_di(THETA[12],2); #> rx_expr_34~Rx_pow_di(THETA[11],2); #> rx_r_=(rx_expr_4)*((rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6)),2)+rx_expr_34)*(rx_expr_3)+((rx_expr_1)*(rx_expr_33*Rx_pow_di(((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)+(rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)*(rx_expr_5)*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_33*Rx_pow_di(((rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))),2)+rx_expr_34); #> DMTA_0=THETA[1]; #> log_k_M23=THETA[2]; #> log_k_M27=THETA[3]; #> log_k_M31=THETA[4]; #> log_k1=THETA[5]; #> log_k2=THETA[6]; #> g_qlogis=THETA[7]; #> f_DMTA_tffm0_1_qlogis=THETA[8]; #> f_DMTA_tffm0_2_qlogis=THETA[9]; #> f_DMTA_tffm0_3_qlogis=THETA[10]; #> sigma_low=THETA[11]; #> rsd_high=THETA[12]; #> eta.DMTA_0=ETA[1]; #> eta.log_k_M23=ETA[2]; #> eta.log_k_M27=ETA[3]; #> eta.log_k_M31=ETA[4]; #> eta.log_k1=ETA[5]; #> eta.log_k2=ETA[6]; #> eta.g_qlogis=ETA[7]; #> eta.f_DMTA_tffm0_1_qlogis=ETA[8]; #> eta.f_DMTA_tffm0_2_qlogis=ETA[9]; #> eta.f_DMTA_tffm0_3_qlogis=ETA[10]; #> DMTA_0_model=rx_expr_14; #> k_M23=rx_expr_26; #> k_M27=rx_expr_27; #> k_M31=rx_expr_28; #> k1=rx_expr_24; #> k2=rx_expr_25; #> g=1/(rx_expr_35); #> f_DMTA_to_M23=1/(1+exp(-(ETA[8]+THETA[8]))); #> f_DMTA_to_M23=1/(1+exp(-(ETA[9]+THETA[9]))); #> f_DMTA_to_M23=1/(1+exp(-(ETA[10]+THETA[10]))); #> f_DMTA_to_M23=f_DMTA_tffm0_1; #> f_DMTA_to_M27=(rx_expr_21)*f_DMTA_tffm0_2; #> f_DMTA_to_M31=(rx_expr_22)*(rx_expr_21)*f_DMTA_tffm0_3; #> tad=tad(); #> dosenum=dosenum();
#> Needed Covariates:
#> [1] "f_DMTA_tffm0_1" "f_DMTA_tffm0_2" "f_DMTA_tffm0_3" "CMT"
#> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.
#> Timing stopped at: 121.4 8.294 129.7
#> Timing stopped at: 121.5 8.294 129.9
summary(f_dmta_nlmixr_focei)
#> Error in summary(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found
plot(f_dmta_nlmixr_focei)
#> Error in plot(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found
# Using saemix takes about 18 minutes system.time( f_dmta_saemix <- saem(f_dmta_mkin_tc, test_log_parms = TRUE) )
#> Running main SAEM algorithm #> [1] "Tue Oct 5 16:58:50 2021" #> .... #> Minimisation finished #> [1] "Tue Oct 5 17:17:24 2021"
#> user system elapsed #> 1181.365 0.031 1181.470
# nlmixr with est = "saem" is pretty fast with default iteration numbers, most # of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end # The likelihood calculated for the nlmixr fit is much lower than that found by saemix # Also, the trace plot and the plot of the individual predictions is not # convincing for the parent. It seems we are fitting an overparameterised # model, so the result we get strongly depends on starting parameters and control settings. system.time( f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem", control = nlmixr::saemControl(print = 500, logLik = TRUE, nmc = 9)) )
#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
#> Warning: number of items to replace is not a multiple of replacement length
#> parameter labels from comments are typically ignored in non-interactive mode
#> Need to run with the source intact to parse comments
#> Error in eval(substitute(expr), data, enclos = parent.frame()): Cannot run SAEM since some of the parameters are not mu-referenced (eta.f_DMTA_tffm0_1_qlogis, eta.f_DMTA_tffm0_2_qlogis, eta.f_DMTA_tffm0_3_qlogis)
#> Timing stopped at: 0.849 0.016 0.864
#> Timing stopped at: 1.041 0.016 1.058
traceplot(f_dmta_nlmixr_saem$nm)
#> Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"
summary(f_dmta_nlmixr_saem)
#> Error in summary(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found
plot(f_dmta_nlmixr_saem)
#> Error in plot(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found
# }