This functions sets up a nonlinear mixed effects model for an mmkin row object. An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a list of datasets.
# S3 method for mmkin
nlme(
  model,
  data = "auto",
  fixed = lapply(as.list(names(mean_degparms(model))), function(el) eval(parse(text =
    paste(el, 1, sep = "~")))),
  random = pdDiag(fixed),
  groups,
  start = mean_degparms(model, random = TRUE, test_log_parms = TRUE),
  correlation = NULL,
  weights = NULL,
  subset,
  method = c("ML", "REML"),
  na.action = na.fail,
  naPattern,
  control = list(),
  verbose = FALSE
)
# S3 method for nlme.mmkin
print(x, digits = max(3, getOption("digits") - 3), ...)
# S3 method for nlme.mmkin
update(object, ...)An mmkin row object.
Ignored, data are taken from the mmkin model
Ignored, all degradation parameters fitted in the mmkin model are used as fixed parameters
If not specified, no correlations between random effects are set up for the optimised degradation model parameters. This is achieved by using the nlme::pdDiag method.
See the documentation of nlme
If not specified, mean values of the fitted degradation parameters taken from the mmkin object are used
See the documentation of nlme
passed to nlme
passed to nlme
passed to nlme
passed to nlme
passed to nlme
passed to nlme
passed to nlme
An nlme.mmkin object to print
Number of digits to use for printing
Update specifications passed to update.nlme
An nlme.mmkin object to update
Upon success, a fitted 'nlme.mmkin' object, which is an nlme object with additional elements. It also inherits from 'mixed.mmkin'.
Note that the convergence of the nlme algorithms depends on the quality of the data. In degradation kinetics, we often only have few datasets (e.g. data for few soils) and complicated degradation models, which may make it impossible to obtain convergence with nlme.
As the object inherits from nlme::nlme, there is a wealth of
methods that will automatically work on 'nlme.mmkin' objects, such as
nlme::intervals(), nlme::anova.lme() and nlme::coef.lme().
ds <- lapply(experimental_data_for_UBA_2019[6:10],
 function(x) subset(x$data[c("name", "time", "value")], name == "parent"))
# \dontrun{
  f <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, cores = 1)
  library(nlme)
  f_nlme_sfo <- nlme(f["SFO", ])
  f_nlme_dfop <- nlme(f["DFOP", ])
  anova(f_nlme_sfo, f_nlme_dfop)
#>             Model df      AIC      BIC    logLik   Test  L.Ratio p-value
#> f_nlme_sfo      1  5 625.0539 637.5529 -307.5269                        
#> f_nlme_dfop     2  9 495.1270 517.6253 -238.5635 1 vs 2 137.9269  <.0001
  print(f_nlme_dfop)
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#> 
#> Structural model:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
#>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
#>            * parent
#> 
#> Data:
#> 90 observations of 1 variable(s) grouped in 5 datasets
#> 
#> Log-likelihood: -238.6
#> 
#> Fixed effects:
#>  list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) 
#> parent_0   log_k1   log_k2 g_qlogis 
#>  94.1702  -1.8002  -4.1474   0.0324 
#> 
#> Random effects:
#>  Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#>  Level: ds
#>  Structure: Diagonal
#>         parent_0 log_k1 log_k2 g_qlogis Residual
#> StdDev:    2.488 0.8447   1.33   0.4652    2.321
#> 
  plot(f_nlme_dfop)
 endpoints(f_nlme_dfop)
#> $distimes
#>            DT50     DT90 DT50back  DT50_k1  DT50_k2
#> parent 10.79857 100.7937 30.34193 4.193938 43.85443
#> 
  ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
   function(x) x$data[c("name", "time", "value")])
  m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
    A1 = mkinsub("SFO"), use_of_ff = "min", quiet = TRUE)
  m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),
    A1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE)
  m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
    A1 = mkinsub("SFO"), quiet = TRUE)
  f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
   "SFO-SFO-ff" = m_sfo_sfo_ff,
   "DFOP-SFO" = m_dfop_sfo),
    ds_2, quiet = TRUE)
  f_nlme_sfo_sfo <- nlme(f_2["SFO-SFO", ])
  plot(f_nlme_sfo_sfo)
  endpoints(f_nlme_dfop)
#> $distimes
#>            DT50     DT90 DT50back  DT50_k1  DT50_k2
#> parent 10.79857 100.7937 30.34193 4.193938 43.85443
#> 
  ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
   function(x) x$data[c("name", "time", "value")])
  m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
    A1 = mkinsub("SFO"), use_of_ff = "min", quiet = TRUE)
  m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),
    A1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE)
  m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
    A1 = mkinsub("SFO"), quiet = TRUE)
  f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
   "SFO-SFO-ff" = m_sfo_sfo_ff,
   "DFOP-SFO" = m_dfop_sfo),
    ds_2, quiet = TRUE)
  f_nlme_sfo_sfo <- nlme(f_2["SFO-SFO", ])
  plot(f_nlme_sfo_sfo)
 # With formation fractions this does not coverge with defaults
  # f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])
  #plot(f_nlme_sfo_sfo_ff)
  # For the following, we need to increase pnlsMaxIter and the tolerance
  # to get convergence
  f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ],
    control = list(pnlsMaxIter = 120, tolerance = 5e-4))
  plot(f_nlme_dfop_sfo)
  # With formation fractions this does not coverge with defaults
  # f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])
  #plot(f_nlme_sfo_sfo_ff)
  # For the following, we need to increase pnlsMaxIter and the tolerance
  # to get convergence
  f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ],
    control = list(pnlsMaxIter = 120, tolerance = 5e-4))
  plot(f_nlme_dfop_sfo)
 anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo)
#>                 Model df       AIC       BIC    logLik   Test  L.Ratio p-value
#> f_nlme_dfop_sfo     1 13  843.8547  884.6201 -408.9274                        
#> f_nlme_sfo_sfo      2  9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274  <.0001
  endpoints(f_nlme_sfo_sfo)
#> $ff
#> parent_sink   parent_A1     A1_sink 
#>   0.5912432   0.4087568   1.0000000 
#> 
#> $distimes
#>            DT50     DT90
#> parent 19.13518  63.5657
#> A1     66.02155 219.3189
#> 
  endpoints(f_nlme_dfop_sfo)
#> $ff
#>   parent_A1 parent_sink 
#>   0.2768574   0.7231426 
#> 
#> $distimes
#>             DT50     DT90 DT50back  DT50_k1  DT50_k2
#> parent  11.07091 104.6320 31.49737 4.462383 46.20825
#> A1     162.30519 539.1662       NA       NA       NA
#> 
  if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available
    # Attempts to fit metabolite kinetics with the tc error model are possible,
    # but need tweeking of control values and sometimes do not converge
    f_tc <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, error_model = "tc")
    f_nlme_sfo_tc <- nlme(f_tc["SFO", ])
    f_nlme_dfop_tc <- nlme(f_tc["DFOP", ])
    AIC(f_nlme_sfo, f_nlme_sfo_tc, f_nlme_dfop, f_nlme_dfop_tc)
    print(f_nlme_dfop_tc)
  }
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#> 
#> Structural model:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
#>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
#>            * parent
#> 
#> Data:
#> 90 observations of 1 variable(s) grouped in 5 datasets
#> 
#> Log-likelihood: -238.4
#> 
#> Fixed effects:
#>  list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) 
#> parent_0   log_k1   log_k2 g_qlogis 
#> 94.04774 -1.82340 -4.16716  0.05686 
#> 
#> Random effects:
#>  Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#>  Level: ds
#>  Structure: Diagonal
#>         parent_0 log_k1 log_k2 g_qlogis Residual
#> StdDev:    2.474   0.85  1.337   0.4659        1
#> 
#> Variance function:
#>  Structure: Constant plus proportion of variance covariate
#>  Formula: ~fitted(.) 
#>  Parameter estimates:
#>      const       prop 
#> 2.23223147 0.01262395 
  f_2_obs <- update(f_2, error_model = "obs")
  f_nlme_sfo_sfo_obs <- nlme(f_2_obs["SFO-SFO", ])
  print(f_nlme_sfo_sfo_obs)
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#> 
#> Structural model:
#> d_parent/dt = - k_parent_sink * parent - k_parent_A1 * parent
#> d_A1/dt = + k_parent_A1 * parent - k_A1_sink * A1
#> 
#> Data:
#> 170 observations of 2 variable(s) grouped in 5 datasets
#> 
#> Log-likelihood: -473
#> 
#> Fixed effects:
#>  list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1,      log_k_A1_sink ~ 1) 
#>          parent_0 log_k_parent_sink   log_k_parent_A1     log_k_A1_sink 
#>            87.976            -3.670            -4.164            -4.645 
#> 
#> Random effects:
#>  Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1,      log_k_A1_sink ~ 1)
#>  Level: ds
#>  Structure: Diagonal
#>         parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink Residual
#> StdDev:    3.992             1.777           1.055        0.4821    6.483
#> 
#> Variance function:
#>  Structure: Different standard deviations per stratum
#>  Formula: ~1 | name 
#>  Parameter estimates:
#>    parent        A1 
#> 1.0000000 0.2049995 
  f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ],
    control = list(pnlsMaxIter = 120, tolerance = 5e-4))
  f_2_tc <- update(f_2, error_model = "tc")
  # f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # No convergence with 50 iterations
  # f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ],
  #  control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] <- gradnm
  anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs)
#>                     Model df      AIC      BIC    logLik   Test  L.Ratio
#> f_nlme_dfop_sfo         1 13 843.8547 884.6201 -408.9274                
#> f_nlme_dfop_sfo_obs     2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32091
#>                     p-value
#> f_nlme_dfop_sfo            
#> f_nlme_dfop_sfo_obs  <.0001
# }
  anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo)
#>                 Model df       AIC       BIC    logLik   Test  L.Ratio p-value
#> f_nlme_dfop_sfo     1 13  843.8547  884.6201 -408.9274                        
#> f_nlme_sfo_sfo      2  9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274  <.0001
  endpoints(f_nlme_sfo_sfo)
#> $ff
#> parent_sink   parent_A1     A1_sink 
#>   0.5912432   0.4087568   1.0000000 
#> 
#> $distimes
#>            DT50     DT90
#> parent 19.13518  63.5657
#> A1     66.02155 219.3189
#> 
  endpoints(f_nlme_dfop_sfo)
#> $ff
#>   parent_A1 parent_sink 
#>   0.2768574   0.7231426 
#> 
#> $distimes
#>             DT50     DT90 DT50back  DT50_k1  DT50_k2
#> parent  11.07091 104.6320 31.49737 4.462383 46.20825
#> A1     162.30519 539.1662       NA       NA       NA
#> 
  if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available
    # Attempts to fit metabolite kinetics with the tc error model are possible,
    # but need tweeking of control values and sometimes do not converge
    f_tc <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, error_model = "tc")
    f_nlme_sfo_tc <- nlme(f_tc["SFO", ])
    f_nlme_dfop_tc <- nlme(f_tc["DFOP", ])
    AIC(f_nlme_sfo, f_nlme_sfo_tc, f_nlme_dfop, f_nlme_dfop_tc)
    print(f_nlme_dfop_tc)
  }
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#> 
#> Structural model:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
#>            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
#>            * parent
#> 
#> Data:
#> 90 observations of 1 variable(s) grouped in 5 datasets
#> 
#> Log-likelihood: -238.4
#> 
#> Fixed effects:
#>  list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) 
#> parent_0   log_k1   log_k2 g_qlogis 
#> 94.04774 -1.82340 -4.16716  0.05686 
#> 
#> Random effects:
#>  Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#>  Level: ds
#>  Structure: Diagonal
#>         parent_0 log_k1 log_k2 g_qlogis Residual
#> StdDev:    2.474   0.85  1.337   0.4659        1
#> 
#> Variance function:
#>  Structure: Constant plus proportion of variance covariate
#>  Formula: ~fitted(.) 
#>  Parameter estimates:
#>      const       prop 
#> 2.23223147 0.01262395 
  f_2_obs <- update(f_2, error_model = "obs")
  f_nlme_sfo_sfo_obs <- nlme(f_2_obs["SFO-SFO", ])
  print(f_nlme_sfo_sfo_obs)
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#> 
#> Structural model:
#> d_parent/dt = - k_parent_sink * parent - k_parent_A1 * parent
#> d_A1/dt = + k_parent_A1 * parent - k_A1_sink * A1
#> 
#> Data:
#> 170 observations of 2 variable(s) grouped in 5 datasets
#> 
#> Log-likelihood: -473
#> 
#> Fixed effects:
#>  list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1,      log_k_A1_sink ~ 1) 
#>          parent_0 log_k_parent_sink   log_k_parent_A1     log_k_A1_sink 
#>            87.976            -3.670            -4.164            -4.645 
#> 
#> Random effects:
#>  Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1,      log_k_A1_sink ~ 1)
#>  Level: ds
#>  Structure: Diagonal
#>         parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink Residual
#> StdDev:    3.992             1.777           1.055        0.4821    6.483
#> 
#> Variance function:
#>  Structure: Different standard deviations per stratum
#>  Formula: ~1 | name 
#>  Parameter estimates:
#>    parent        A1 
#> 1.0000000 0.2049995 
  f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ],
    control = list(pnlsMaxIter = 120, tolerance = 5e-4))
  f_2_tc <- update(f_2, error_model = "tc")
  # f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # No convergence with 50 iterations
  # f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ],
  #  control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] <- gradnm
  anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs)
#>                     Model df      AIC      BIC    logLik   Test  L.Ratio
#> f_nlme_dfop_sfo         1 13 843.8547 884.6201 -408.9274                
#> f_nlme_dfop_sfo_obs     2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32091
#>                     p-value
#> f_nlme_dfop_sfo            
#> f_nlme_dfop_sfo_obs  <.0001
# }