<!-- Generated by pkgdown: do not edit by hand --> <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Create an nlme model for an mmkin row object — nlme.mmkin • mkin</title> <!-- jquery --> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script> <!-- Bootstrap --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" /> <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script> <!-- bootstrap-toc --> <link rel="stylesheet" href="../bootstrap-toc.css"> <script src="../bootstrap-toc.js"></script> <!-- Font Awesome icons --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" /> <!-- clipboard.js --> <script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script> <!-- headroom.js --> <script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script> <!-- pkgdown --> <link href="../pkgdown.css" rel="stylesheet"> <script src="../pkgdown.js"></script> <meta property="og:title" content="Create an nlme model for an mmkin row object — nlme.mmkin" /> <meta property="og:description" content="This functions sets up a nonlinear mixed effects model for an mmkin row object. An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a list of datasets." /> <meta name="robots" content="noindex"> <!-- mathjax --> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script> <!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> </head> <body data-spy="scroll" data-target="#toc"> <div class="container template-reference-topic"> <header> <div class="navbar navbar-default navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">mkin</a> <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span> </span> </div> <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"> <li> <a href="../reference/index.html">Functions and data</a> </li> <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> Articles <span class="caret"></span> </a> <ul class="dropdown-menu" role="menu"> <li> <a href="../articles/mkin.html">Introduction to mkin</a> </li> <li> <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a> </li> <li> <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a> </li> <li> <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a> </li> <li> <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a> </li> <li> <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a> </li> <li> <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a> </li> <li> <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a> </li> </ul> </li> <li> <a href="../news/index.html">News</a> </li> </ul> <ul class="nav navbar-nav navbar-right"> <li> <a href="https://github.com/jranke/mkin/"> <span class="fab fa fab fa-github fa-lg"></span> </a> </li> </ul> </div><!--/.nav-collapse --> </div><!--/.container --> </div><!--/.navbar --> </header> <div class="row"> <div class="col-md-9 contents"> <div class="page-header"> <h1>Create an nlme model for an mmkin row object</h1> <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/nlme.mmkin.R'><code>R/nlme.mmkin.R</code></a></small> <div class="hidden name"><code>nlme.mmkin.Rd</code></div> </div> <div class="ref-description"> <p>This functions sets up a nonlinear mixed effects model for an mmkin row object. An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a list of datasets.</p> </div> <pre class="usage"><span class='co'># S3 method for mmkin</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span> <span class='va'>model</span>, data <span class='op'>=</span> <span class='st'>"auto"</span>, fixed <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>as.list</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='fu'><a href='nlme_function.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>el</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/eval.html'>eval</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/parse.html'>parse</a></span><span class='op'>(</span>text <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='va'>el</span>, <span class='fl'>1</span>, sep <span class='op'>=</span> <span class='st'>"~"</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span><span class='op'>)</span>, random <span class='op'>=</span> <span class='fu'>pdDiag</span><span class='op'>(</span><span class='va'>fixed</span><span class='op'>)</span>, <span class='va'>groups</span>, start <span class='op'>=</span> <span class='fu'><a href='nlme_function.html'>mean_degparms</a></span><span class='op'>(</span><span class='va'>model</span>, random <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>, correlation <span class='op'>=</span> <span class='cn'>NULL</span>, weights <span class='op'>=</span> <span class='cn'>NULL</span>, <span class='va'>subset</span>, method <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"ML"</span>, <span class='st'>"REML"</span><span class='op'>)</span>, na.action <span class='op'>=</span> <span class='va'>na.fail</span>, <span class='va'>naPattern</span>, control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='op'>)</span>, verbose <span class='op'>=</span> <span class='cn'>FALSE</span> <span class='op'>)</span> <span class='co'># S3 method for nlme.mmkin</span> <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>x</span>, digits <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/Extremes.html'>max</a></span><span class='op'>(</span><span class='fl'>3</span>, <span class='fu'><a href='https://rdrr.io/r/base/options.html'>getOption</a></span><span class='op'>(</span><span class='st'>"digits"</span><span class='op'>)</span> <span class='op'>-</span> <span class='fl'>3</span><span class='op'>)</span>, <span class='va'>...</span><span class='op'>)</span> <span class='co'># S3 method for nlme.mmkin</span> <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>object</span>, <span class='va'>...</span><span class='op'>)</span></pre> <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2> <table class="ref-arguments"> <colgroup><col class="name" /><col class="desc" /></colgroup> <tr> <th>model</th> <td><p>An <a href='mmkin.html'>mmkin</a> row object.</p></td> </tr> <tr> <th>data</th> <td><p>Ignored, data are taken from the mmkin model</p></td> </tr> <tr> <th>fixed</th> <td><p>Ignored, all degradation parameters fitted in the mmkin model are used as fixed parameters</p></td> </tr> <tr> <th>random</th> <td><p>If not specified, correlated random effects are set up for all optimised degradation model parameters using the log-Cholesky parameterization <a href='https://rdrr.io/pkg/nlme/man/pdLogChol.html'>nlme::pdLogChol</a> that is also the default of the generic <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a> method.</p></td> </tr> <tr> <th>groups</th> <td><p>See the documentation of nlme</p></td> </tr> <tr> <th>start</th> <td><p>If not specified, mean values of the fitted degradation parameters taken from the mmkin object are used</p></td> </tr> <tr> <th>correlation</th> <td><p>See the documentation of nlme</p></td> </tr> <tr> <th>weights</th> <td><p>passed to nlme</p></td> </tr> <tr> <th>subset</th> <td><p>passed to nlme</p></td> </tr> <tr> <th>method</th> <td><p>passed to nlme</p></td> </tr> <tr> <th>na.action</th> <td><p>passed to nlme</p></td> </tr> <tr> <th>naPattern</th> <td><p>passed to nlme</p></td> </tr> <tr> <th>control</th> <td><p>passed to nlme</p></td> </tr> <tr> <th>verbose</th> <td><p>passed to nlme</p></td> </tr> <tr> <th>x</th> <td><p>An nlme.mmkin object to print</p></td> </tr> <tr> <th>digits</th> <td><p>Number of digits to use for printing</p></td> </tr> <tr> <th>...</th> <td><p>Update specifications passed to update.nlme</p></td> </tr> <tr> <th>object</th> <td><p>An nlme.mmkin object to update</p></td> </tr> </table> <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2> <p>Upon success, a fitted 'nlme.mmkin' object, which is an nlme object with additional elements. It also inherits from 'mixed.mmkin'.</p> <h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2> <p>As the object inherits from <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme::nlme</a>, there is a wealth of methods that will automatically work on 'nlme.mmkin' objects, such as <code><a href='https://rdrr.io/pkg/nlme/man/intervals.html'>nlme::intervals()</a></code>, <code><a href='https://rdrr.io/pkg/nlme/man/anova.lme.html'>nlme::anova.lme()</a></code> and <code><a href='https://rdrr.io/pkg/nlme/man/coef.lme.html'>nlme::coef.lme()</a></code>.</p> <h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2> <div class='dont-index'><p><code><a href='nlme_function.html'>nlme_function()</a></code>, <a href='plot.mixed.mmkin.html'>plot.mixed.mmkin</a>, <a href='summary.nlme.mmkin.html'>summary.nlme.mmkin</a></p></div> <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2> <pre class="examples"><div class='input'><span class='va'>ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span>, <span class='va'>name</span> <span class='op'>==</span> <span class='st'>"parent"</span><span class='op'>)</span><span class='op'>)</span> <span class='va'>f</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span> <span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://svn.r-project.org/R-packages/trunk/nlme/'>nlme</a></span><span class='op'>)</span> <span class='va'>f_nlme_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span><span class='op'>)</span> <span class='co'># \dontrun{</span> <span class='va'>f_nlme_dfop</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_dfop</span><span class='op'>)</span> </div><div class='output co'>#> Model df AIC BIC logLik Test L.Ratio p-value #> f_nlme_sfo 1 5 625.0539 637.5529 -307.5269 #> f_nlme_dfop 2 9 495.1270 517.6253 -238.5635 1 vs 2 137.9268 <.0001</div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood #> #> Structural model: #> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * #> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) #> * parent #> #> Data: #> 90 observations of 1 variable(s) grouped in 5 datasets #> #> Log-likelihood: -238.6 #> #> Fixed effects: #> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) #> parent_0 log_k1 log_k2 g_qlogis #> 94.1702 -1.8002 -4.1474 0.0324 #> #> Random effects: #> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) #> Level: ds #> Structure: Diagonal #> parent_0 log_k1 log_k2 g_qlogis Residual #> StdDev: 2.488 0.8447 1.33 0.4652 2.321 #> </div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> </div><div class='img'><img src='nlme.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> </div><div class='output co'>#> $distimes #> DT50 DT90 DT50back DT50_k1 DT50_k2 #> parent 10.79857 100.7937 30.34192 4.193937 43.85442 #> </div><div class='input'> <span class='va'>ds_2</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span> <span class='va'>m_sfo_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>, A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"min"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='va'>m_sfo_sfo_ff</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>, A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"max"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='va'>m_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='st'>"A1"</span><span class='op'>)</span>, A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='va'>f_2</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>, <span class='st'>"SFO-SFO-ff"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo_ff</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> <span class='va'>f_nlme_sfo_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span> </div><div class='img'><img src='nlme.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'> <span class='co'># With formation fractions this does not coverge with defaults</span> <span class='co'># f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])</span> <span class='co'>#plot(f_nlme_sfo_sfo_ff)</span> <span class='co'># With the log-Cholesky parameterization, this converges in 11</span> <span class='co'># iterations and around 100 seconds, but without tweaking control</span> <span class='co'># parameters (with pdDiag, increasing the tolerance and pnlsMaxIter was</span> <span class='co'># necessary)</span> <span class='va'>f_nlme_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> </div><div class='output co'>#> <span class='error'>Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis), data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered", "factor")), name = c("parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2, 58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3, 4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11, 13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8, 7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6, 41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9, 6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6, 25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1, 10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1, 21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8, 98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1, 18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4, 7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4, 11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1, 65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3, 3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2, 14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = value ~ time | ds, FUN = function (x) max(x, na.rm = TRUE), order.groups = FALSE), start = list( fixed = c(parent_0 = 93.8101519326534, log_k_A1 = -9.76474551635931, f_parent_qlogis = -0.971114801595408, log_k1 = -1.87993711571859, log_k2 = -4.27081421366622, g_qlogis = 0.135644115277507 ), random = list(ds = structure(c(2.56569977430371, -3.49441920289139, -3.32614443321494, 4.35347873814922, -0.0986148763466161, 4.65850590018027, 1.8618544764481, 6.12693257601545, 4.91792724701579, -17.5652201996596, -0.466203822618637, 0.746660653597927, 0.282193987271096, -0.42053488943072, -0.142115928819667, 0.369240076779088, -1.38985563501659, 1.02592753494098, 0.73090914081534, -0.736221117518819, 0.768170629350299, -1.89347658079869, 1.72168783460352, 0.844607177798114, -1.44098906095325, -0.377731855445672, 0.168180098477565, 0.469683412912104, 0.500717664434525, -0.760849320378522), .Dim = 5:6, .Dimnames = list(c("1", "2", "3", "4", "5"), c("parent_0", "log_k_A1", "f_parent_qlogis", "log_k1", "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag", "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), class = "listForm"), Dimnames = list(NULL, NULL))): maximum number of iterations (maxIter = 50) reached without convergence</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 49.95 16.5 44.08</span></div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span> </div><div class='output co'>#> <span class='error'>Error in plot(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span> </div><div class='output co'>#> <span class='error'>Error in anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span> </div><div class='output co'>#> $ff #> parent_sink parent_A1 A1_sink #> 0.5912432 0.4087568 1.0000000 #> #> $distimes #> DT50 DT90 #> parent 19.13518 63.5657 #> A1 66.02155 219.3189 #> </div><div class='input'> <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span> </div><div class='output co'>#> <span class='error'>Error in endpoints(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='fu'>findFunction</span><span class='op'>(</span><span class='st'>"varConstProp"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>></span> <span class='fl'>0</span><span class='op'>)</span> <span class='op'>{</span> <span class='co'># tc error model for nlme available</span> <span class='co'># Attempts to fit metabolite kinetics with the tc error model are possible,</span> <span class='co'># but need tweeking of control values and sometimes do not converge</span> <span class='va'>f_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> <span class='va'>f_nlme_sfo_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_tc</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span><span class='op'>)</span> <span class='va'>f_nlme_dfop_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_tc</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_sfo_tc</span>, <span class='va'>f_nlme_dfop</span>, <span class='va'>f_nlme_dfop_tc</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_tc</span><span class='op'>)</span> <span class='op'>}</span> </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood #> #> Structural model: #> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * #> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) #> * parent #> #> Data: #> 90 observations of 1 variable(s) grouped in 5 datasets #> #> Log-likelihood: -238.4 #> #> Fixed effects: #> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) #> parent_0 log_k1 log_k2 g_qlogis #> 94.04775 -1.82340 -4.16715 0.05685 #> #> Random effects: #> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) #> Level: ds #> Structure: Diagonal #> parent_0 log_k1 log_k2 g_qlogis Residual #> StdDev: 2.474 0.85 1.337 0.4659 1 #> #> Variance function: #> Structure: Constant plus proportion of variance covariate #> Formula: ~fitted(.) #> Parameter estimates: #> const prop #> 2.23224114 0.01262341 </div><div class='input'> <span class='va'>f_2_obs</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span> <span class='va'>f_nlme_sfo_sfo_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo_obs</span><span class='op'>)</span> </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood #> #> Structural model: #> d_parent/dt = - k_parent_sink * parent - k_parent_A1 * parent #> d_A1/dt = + k_parent_A1 * parent - k_A1_sink * A1 #> #> Data: #> 170 observations of 2 variable(s) grouped in 5 datasets #> #> Log-likelihood: -473 #> #> Fixed effects: #> list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1) #> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink #> 87.976 -3.670 -4.164 -4.645 #> #> Random effects: #> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1) #> Level: ds #> Structure: Diagonal #> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink Residual #> StdDev: 3.992 1.777 1.055 0.4821 6.483 #> #> Variance function: #> Structure: Different standard deviations per stratum #> Formula: ~1 | name #> Parameter estimates: #> parent A1 #> 1.0000000 0.2050003 </div><div class='input'> <span class='va'>f_nlme_dfop_sfo_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> </div><div class='output co'>#> <span class='error'>Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis), data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered", "factor")), name = c("parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2, 58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3, 4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11, 13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8, 7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6, 41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9, 6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6, 25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1, 10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1, 21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8, 98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1, 18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4, 7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4, 11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1, 65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3, 3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2, 14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = value ~ time | ds, FUN = function (x) max(x, na.rm = TRUE), order.groups = FALSE), start = list( fixed = c(parent_0 = 93.4272167134207, log_k_A1 = -9.71590717106959, f_parent_qlogis = -0.953712099744438, log_k1 = -1.95256957646888, log_k2 = -4.42919226610318, g_qlogis = 0.193023137298073 ), random = list(ds = structure(c(2.85557330683041, -3.87630303729395, -2.78062140212751, 4.82042042600536, -1.01906929341432, 4.613992019697, 2.05871276943309, 6.0766404049189, 4.86471337131288, -17.6140585653619, -0.480721175257541, 0.773079218835614, 0.260464433006093, -0.440615012802434, -0.112207463781733, 0.445812953745225, -1.49588630006094, 1.13602040717272, 0.801850880762046, -0.887797941619048, 0.936480292463262, -2.43093808171905, 1.91256225793793, 0.984827519864443, -1.40293198854659, -0.455176326336681, 0.376355651864385, 0.343919720700401, 0.46329187713133, -0.728390923359434 ), .Dim = 5:6, .Dimnames = list(c("1", "2", "3", "4", "5"), c("parent_0", "log_k_A1", "f_parent_qlogis", "log_k1", "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag", "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), class = "listForm"), Dimnames = list(NULL, NULL)), weights = structure(numeric(0), formula = ~1 | name, class = c("varIdent", "varFunc"))): maximum number of iterations (maxIter = 50) reached without convergence</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 59.38 16.5 53.5</span></div><div class='input'> <span class='va'>f_2_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>, <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>, <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> <span class='co'># f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # stops with error message</span> <span class='va'>f_nlme_dfop_sfo_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> </div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='warning'>Warning: longer object length is not a multiple of shorter object length</span></div><div class='output co'>#> <span class='error'>Error in X[, fmap[[nm]]] <- gradnm: number of items to replace is not a multiple of replacement length</span></div><div class='output co'>#> <span class='message'>Timing stopped at: 6.363 2.688 5.469</span></div><div class='input'> <span class='co'># We get warnings about false convergence in the LME step in several iterations</span> <span class='co'># but as the last such warning occurs in iteration 25 and we have 28 iterations</span> <span class='co'># we can ignore these</span> <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_dfop_sfo_obs</span>, <span class='va'>f_nlme_dfop_sfo_tc</span><span class='op'>)</span> </div><div class='output co'>#> <span class='error'>Error in anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs, f_nlme_dfop_sfo_tc): object 'f_nlme_dfop_sfo' not found</span></div><div class='input'> <span class='co'># }</span> </div></pre> </div> <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> <nav id="toc" data-toggle="toc" class="sticky-top"> <h2 data-toc-skip>Contents</h2> </nav> </div> </div> <footer> <div class="copyright"> <p>Developed by Johannes Ranke.</p> </div> <div class="pkgdown"> <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> </div> </footer> </div> </body> </html>