The default method 'profile' is based on the profile likelihood for each parameter. The method uses two nested optimisations. The speed of the method could likely be improved by using the method of Venzon and Moolgavkar (1988).

# S3 method for mkinfit
confint(object, parm, level = 0.95, alpha = 1 -
  level, cutoff, method = c("profile", "quadratic"),
  transformed = TRUE, backtransform = TRUE,
  cores = round(detectCores()/2), quiet = FALSE, ...)

Arguments

object

An mkinfit object

parm

A vector of names of the parameters which are to be given confidence intervals. If missing, all parameters are considered.

level

The confidence level required

alpha

The allowed error probability, overrides 'level' if specified.

cutoff

Possibility to specify an alternative cutoff for the difference in the log-likelihoods at the confidence boundary. Specifying an explicit cutoff value overrides arguments 'level' and 'alpha'

method

The 'profile' method searches the parameter space for the cutoff of the confidence intervals by means of a likelihood ratio test. The 'quadratic' method approximates the likelihood function at the optimised parameters using the second term of the Taylor expansion, using a second derivative (hessian) contained in the object.

transformed

If the quadratic approximation is used, should it be applied to the likelihood based on the transformed parameters?

backtransform

If we approximate the likelihood in terms of the transformed parameters, should we backtransform the parameters with their confidence intervals?

cores

The number of cores to be used for multicore processing. This is only used when the cluster argument is NULL. On Windows machines, cores > 1 is not supported.

quiet

Should we suppress the message "Profiling the likelihood"

...

Not used

Value

A matrix with columns giving lower and upper confidence limits for each parameter.

References

Bates DM and Watts GW (1988) Nonlinear regression analysis & its applications

Pawitan Y (2013) In all likelihood - Statistical modelling and inference using likelihood. Clarendon Press, Oxford.

Venzon DJ and Moolgavkar SH (1988) A Method for Computing Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37, 87–94.

Examples

f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) confint(f, method = "quadratic")
#> 2.5% 97.5% #> parent_0 71.8242430 93.1600766 #> k_parent_sink 0.2109541 0.4440528 #> sigma 1.9778868 7.3681380
# \dontrun{ confint(f, method = "profile")
#> Profiling the likelihood
#> 2.5% 97.5% #> parent_0 73.0641834 92.1392181 #> k_parent_sink 0.2170293 0.4235348 #> sigma 3.1307772 8.0628314
SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), quiet = TRUE) SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE) f_d_1 <- mkinfit(SFO_SFO, subset(FOCUS_2006_D, value != 0), quiet = TRUE) system.time(ci_profile <- confint(f_d_1, cores = 1, quiet = TRUE))
#> User System verstrichen #> 51.063 0.000 51.090
# The following does not save much time, as parent_0 takes up most of the time # system.time(ci_profile <- confint(f_d_1, cores = 5)) # system.time(ci_profile <- confint(f_d_1, # c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = 1)) # If we exclude parent_0 (the confidence of which is often of minor interest), we get a nice # performance improvement from about 30 seconds to about 12 seconds # system.time(ci_profile_no_parent_0 <- confint(f_d_1, c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = 4)) ci_profile
#> 2.5% 97.5% #> parent_0 96.456003650 1.027703e+02 #> k_parent_sink 0.040762501 5.549764e-02 #> k_parent_m1 0.046786482 5.500879e-02 #> k_m1_sink 0.003892605 6.702778e-03 #> sigma 2.535612399 3.985263e+00
ci_quadratic_transformed <- confint(f_d_1, method = "quadratic") ci_quadratic_transformed
#> 2.5% 97.5% #> parent_0 96.403841649 1.027931e+02 #> k_parent_sink 0.041033378 5.596269e-02 #> k_parent_m1 0.046777902 5.511931e-02 #> k_m1_sink 0.004012217 6.897547e-03 #> sigma 2.396089689 3.854918e+00
ci_quadratic_untransformed <- confint(f_d_1, method = "quadratic", transformed = FALSE) ci_quadratic_untransformed
#> 2.5% 97.5% #> parent_0 96.403841653 102.79312450 #> k_parent_sink 0.040485331 0.05535491 #> k_parent_m1 0.046611581 0.05494364 #> k_m1_sink 0.003835483 0.00668582 #> sigma 2.396089689 3.85491806
# Against the expectation based on Bates and Watts (1988), the confidence # intervals based on the internal parameter transformation are less # congruent with the likelihood based intervals. Note the superiority of the # interval based on the untransformed fit for k_m1_sink rel_diffs_transformed <- abs((ci_quadratic_transformed - ci_profile)/ci_profile) rel_diffs_untransformed <- abs((ci_quadratic_untransformed - ci_profile)/ci_profile) rel_diffs_transformed
#> 2.5% 97.5% #> parent_0 0.0005407854 0.0002218012 #> k_parent_sink 0.0066452394 0.0083795930 #> k_parent_m1 0.0001833903 0.0020092090 #> k_m1_sink 0.0307278240 0.0290580487 #> sigma 0.0550252516 0.0327066836
rel_diffs_untransformed
#> 2.5% 97.5% #> parent_0 0.0005407854 0.0002218011 #> k_parent_sink 0.0067996407 0.0025717594 #> k_parent_m1 0.0037382781 0.0011843074 #> k_m1_sink 0.0146745610 0.0025299672 #> sigma 0.0550252516 0.0327066836
# Set the number of cores for further examples if (identical(Sys.getenv("NOT_CRAN"), "true")) { n_cores <- parallel::detectCores() - 1 } else { n_cores <- 1 } if (Sys.getenv("TRAVIS") != "") n_cores = 1 if (Sys.info()["sysname"] == "Windows") n_cores = 1 # Investigate a case with formation fractions f_d_2 <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), quiet = TRUE) ci_profile_ff <- confint(f_d_2, cores = n_cores)
#> Profiling the likelihood
ci_profile_ff
#> 2.5% 97.5% #> parent_0 96.456003650 1.027703e+02 #> k_parent 0.090911032 1.071578e-01 #> k_m1 0.003892605 6.702778e-03 #> f_parent_to_m1 0.471328495 5.611550e-01 #> sigma 2.535612399 3.985263e+00
ci_quadratic_transformed_ff <- confint(f_d_2, method = "quadratic") ci_quadratic_transformed_ff
#> 2.5% 97.5% #> parent_0 96.403840123 1.027931e+02 #> k_parent 0.090823791 1.072543e-01 #> k_m1 0.004012216 6.897547e-03 #> f_parent_to_m1 0.469118710 5.595960e-01 #> sigma 2.396089689 3.854918e+00
ci_quadratic_untransformed_ff <- confint(f_d_2, method = "quadratic", transformed = FALSE) ci_quadratic_untransformed_ff
#> 2.5% 97.5% #> parent_0 96.403840057 1.027931e+02 #> k_parent 0.090491932 1.069035e-01 #> k_m1 0.003835483 6.685819e-03 #> f_parent_to_m1 0.469113361 5.598386e-01 #> sigma 2.396089689 3.854918e+00
rel_diffs_transformed_ff <- abs((ci_quadratic_transformed_ff - ci_profile_ff)/ci_profile_ff) rel_diffs_untransformed_ff <- abs((ci_quadratic_untransformed_ff - ci_profile_ff)/ci_profile_ff) # While the confidence interval for the parent rate constant is closer to # the profile based interval when using the internal parameter # transformation, the intervals for the other parameters are 'better # without internal parameter transformation. rel_diffs_transformed_ff
#> 2.5% 97.5% #> parent_0 0.0005408012 0.0002217857 #> k_parent 0.0009596303 0.0009003981 #> k_m1 0.0307277425 0.0290579163 #> f_parent_to_m1 0.0046884178 0.0027782643 #> sigma 0.0550252516 0.0327066836
rel_diffs_untransformed_ff
#> 2.5% 97.5% #> parent_0 0.0005408019 0.0002217863 #> k_parent 0.0046099989 0.0023730118 #> k_m1 0.0146746451 0.0025300990 #> f_parent_to_m1 0.0046997668 0.0023460293 #> sigma 0.0550252516 0.0327066836
# The profiling for the following fit does not finish in a reasonable time #m_synth_DFOP_par <- mkinmod(parent = mkinsub("DFOP", c("M1", "M2")), # M1 = mkinsub("SFO"), # M2 = mkinsub("SFO"), # use_of_ff = "max", quiet = TRUE) #DFOP_par_c <- synthetic_data_for_UBA_2014[[12]]$data #f_tc_2 <- mkinfit(m_synth_DFOP_par, DFOP_par_c, error_model = "tc", # error_model_algorithm = "direct", quiet = TRUE) #confint(f_tc_2, "parent_0") # }