This implementation is a special case of the class of isometric log-ratio transformations.
ilr(x) invilr(x)
x | A numeric vector. Naturally, the forward transformation is only sensible for vectors with all elements being greater than zero. |
---|
The result of the forward or backward transformation. The returned components always sum to 1 for the case of the inverse log-ratio transformation.
Peter Filzmoser, Karel Hron (2008) Outlier Detection for Compositional Data Using Robust Methods. Math Geosci 40 233-248
Another implementation can be found in R package robCompositions
.
# Order matters ilr(c(0.1, 1, 10))#> [1] -1.628174 -2.820079ilr(c(10, 1, 0.1))#> [1] 1.628174 2.820079# Equal entries give ilr transformations with zeros as elements ilr(c(3, 3, 3))#> [1] 0 0# Almost equal entries give small numbers ilr(c(0.3, 0.4, 0.3))#> [1] -0.2034219 0.1174457# Only the ratio between the numbers counts, not their sum invilr(ilr(c(0.7, 0.29, 0.01)))#> [1] 0.70 0.29 0.01invilr(ilr(2.1 * c(0.7, 0.29, 0.01)))#> [1] 0.70 0.29 0.01# Inverse transformation of larger numbers gives unequal elements invilr(-10)#> [1] 7.213536e-07 9.999993e-01invilr(c(-10, 0))#> [1] 7.207415e-07 9.991507e-01 8.486044e-04# The sum of the elements of the inverse ilr is 1 sum(invilr(c(-10, 0)))#> [1] 1# This is why we do not need all elements of the inverse transformation to go back: a <- c(0.1, 0.3, 0.5) b <- invilr(a) length(b) # Four elements#> [1] 4ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5)#> [1] 0.1 0.3 0.5