Function describing exponential decline from a defined starting value, with an increasing rate constant, supposedly caused by microbial growth
Function describing exponential decline from a defined starting value, with an increasing rate constant, supposedly caused by microbial growth
logistic.solution(t, parent_0, kmax, k0, r) logistic.solution(t, parent_0, kmax, k0, r)
t | Time. |
---|---|
parent_0 | Starting value for the response variable at time zero. |
kmax | Maximum rate constant. |
k0 | Minumum rate constant effective at time zero. |
r | Growth rate of the increase in the rate constant. |
parent.0 | Starting value for the response variable at time zero. |
The value of the response variable at time t
.
The solution of the logistic model reduces to the
SFO.solution
if k0
is equal to kmax
.
The solution of the logistic model reduces to the
SFO.solution
if k0
is equal to kmax
.
FOCUS (2014) “Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version 1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
Other parent solutions:
DFOP.solution()
,
FOMC.solution()
,
HS.solution()
,
IORE.solution()
,
SFO.solution()
,
SFORB.solution()
# Reproduce the plot on page 57 of FOCUS (2014) plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2), from = 0, to = 100, ylim = c(0, 100), xlab = "Time", ylab = "Residue")plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4), from = 0, to = 100, add = TRUE, lty = 2, col = 2)plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8), from = 0, to = 100, add = TRUE, lty = 3, col = 3)plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2), from = 0, to = 100, add = TRUE, lty = 4, col = 4)plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2), from = 0, to = 100, add = TRUE, lty = 5, col = 5)legend("topright", inset = 0.05, legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08), ", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)), lty = 1:5, col = 1:5)# Fit with synthetic data logistic <- mkinmod(parent = mkinsub("logistic")) sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2) d_logistic <- mkinpredict(logistic, parms_logistic, c(parent = 100), sampling_times) d_2_1 <- add_err(d_logistic, sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]] m <- mkinfit("logistic", d_2_1, quiet = TRUE)#> Error in (function (t, parent_0, kmax, k0, r) { parent = parent_0 * (kmax/(kmax - k0 + k0 * exp(r * t)))^(kmax/r)})(t = c(0, 1, 1.21212121212121, 2.42424242424242, 3, 3.63636363636364, 4.84848484848485, 6.06060606060606, 7, 7.27272727272727, 8.48484848484848, 9.6969696969697, 10.9090909090909, 12.1212121212121, 13.3333333333333, 14, 14.5454545454545, 15.7575757575758, 16.969696969697, 18.1818181818182, 19.3939393939394, 20.6060606060606, 21.8181818181818, 23.030303030303, 24.2424242424242, 25.4545454545455, 26.6666666666667, 27.8787878787879, 28, 29.0909090909091, 30.3030303030303, 31.5151515151515, 32.7272727272727, 33.9393939393939, 35.1515151515152, 36.3636363636364, 37.5757575757576, 38.7878787878788, 40, 41.2121212121212, 42.4242424242424, 43.6363636363636, 44.8484848484849, 46.0606060606061, 47.2727272727273, 48.4848484848485, 49.6969696969697, 50.9090909090909, 52.1212121212121, 53.3333333333333, 54.5454545454545, 55.7575757575758, 56.969696969697, 58.1818181818182, 59.3939393939394, 60, 60.6060606060606, 61.8181818181818, 63.030303030303, 64.2424242424242, 65.4545454545455, 66.6666666666667, 67.8787878787879, 69.0909090909091, 70.3030303030303, 71.5151515151515, 72.7272727272727, 73.9393939393939, 75.1515151515152, 76.3636363636364, 77.5757575757576, 78.7878787878788, 80, 81.2121212121212, 82.4242424242424, 83.6363636363636, 84.8484848484848, 86.0606060606061, 87.2727272727273, 88.4848484848485, 89.6969696969697, 90, 90.9090909090909, 92.1212121212121, 93.3333333333333, 94.5454545454545, 95.7575757575758, 96.969696969697, 98.1818181818182, 99.3939393939394, 100.606060606061, 101.818181818182, 103.030303030303, 104.242424242424, 105.454545454545, 106.666666666667, 107.878787878788, 109.090909090909, 110.30303030303, 111.515151515152, 112.727272727273, 113.939393939394, 115.151515151515, 116.363636363636, 117.575757575758, 118.787878787879, 120), parent.0 = c(parent = 101.95687), kmax = 0.1, k0 = 1e-04, r = 0.2): unbenutztes Argument (parent.0 = 101.95687)#>plot_sep(m)#> Error in identical(fit$err_mod, "const"): Objekt 'm' nicht gefunden#> Error in summary(m): Objekt 'm' nicht gefunden#> Error in endpoints(m): Objekt 'm' nicht gefunden# Reproduce the plot on page 57 of FOCUS (2014) plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2), from = 0, to = 100, ylim = c(0, 100), xlab = "Time", ylab = "Residue")plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4), from = 0, to = 100, add = TRUE, lty = 2, col = 2)plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8), from = 0, to = 100, add = TRUE, lty = 3, col = 3)plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2), from = 0, to = 100, add = TRUE, lty = 4, col = 4)plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2), from = 0, to = 100, add = TRUE, lty = 5, col = 5)legend("topright", inset = 0.05, legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08), ", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)), lty = 1:5, col = 1:5)# Fit with synthetic data logistic <- mkinmod(parent = mkinsub("logistic")) sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2) d_logistic <- mkinpredict(logistic, parms_logistic, c(parent = 100), sampling_times) d_2_1 <- add_err(d_logistic, sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]] m <- mkinfit("logistic", d_2_1, quiet = TRUE)#> Error in (function (t, parent_0, kmax, k0, r) { parent = parent_0 * (kmax/(kmax - k0 + k0 * exp(r * t)))^(kmax/r)})(t = c(0, 1, 1.21212121212121, 2.42424242424242, 3, 3.63636363636364, 4.84848484848485, 6.06060606060606, 7, 7.27272727272727, 8.48484848484848, 9.6969696969697, 10.9090909090909, 12.1212121212121, 13.3333333333333, 14, 14.5454545454545, 15.7575757575758, 16.969696969697, 18.1818181818182, 19.3939393939394, 20.6060606060606, 21.8181818181818, 23.030303030303, 24.2424242424242, 25.4545454545455, 26.6666666666667, 27.8787878787879, 28, 29.0909090909091, 30.3030303030303, 31.5151515151515, 32.7272727272727, 33.9393939393939, 35.1515151515152, 36.3636363636364, 37.5757575757576, 38.7878787878788, 40, 41.2121212121212, 42.4242424242424, 43.6363636363636, 44.8484848484849, 46.0606060606061, 47.2727272727273, 48.4848484848485, 49.6969696969697, 50.9090909090909, 52.1212121212121, 53.3333333333333, 54.5454545454545, 55.7575757575758, 56.969696969697, 58.1818181818182, 59.3939393939394, 60, 60.6060606060606, 61.8181818181818, 63.030303030303, 64.2424242424242, 65.4545454545455, 66.6666666666667, 67.8787878787879, 69.0909090909091, 70.3030303030303, 71.5151515151515, 72.7272727272727, 73.9393939393939, 75.1515151515152, 76.3636363636364, 77.5757575757576, 78.7878787878788, 80, 81.2121212121212, 82.4242424242424, 83.6363636363636, 84.8484848484848, 86.0606060606061, 87.2727272727273, 88.4848484848485, 89.6969696969697, 90, 90.9090909090909, 92.1212121212121, 93.3333333333333, 94.5454545454545, 95.7575757575758, 96.969696969697, 98.1818181818182, 99.3939393939394, 100.606060606061, 101.818181818182, 103.030303030303, 104.242424242424, 105.454545454545, 106.666666666667, 107.878787878788, 109.090909090909, 110.30303030303, 111.515151515152, 112.727272727273, 113.939393939394, 115.151515151515, 116.363636363636, 117.575757575758, 118.787878787879, 120), parent.0 = c(parent = 101.95687), kmax = 0.1, k0 = 1e-04, r = 0.2): unbenutztes Argument (parent.0 = 101.95687)#>plot_sep(m)#> Error in identical(fit$err_mod, "const"): Objekt 'm' nicht gefunden#> Error in summary(m): Objekt 'm' nicht gefunden#> Error in endpoints(m): Objekt 'm' nicht gefunden