This function produces a time series for all the observed variables in a
kinetic model as specified by mkinmod
, using a specific set of
kinetic parameters and initial values for the state variables.
mkinpredict(mkinmod, odeparms, odeini, outtimes, solution_type = "deSolve", use_compiled = "auto", method.ode = "lsoda", atol = 1e-08, rtol = 1e-10, map_output = TRUE, ...)
mkinmod
.
mkinpredict
to
ode
in case the solution type is "deSolve". The default
"lsoda" is performant, but sometimes fails to converge.
FALSE
, no compiled version of the mkinmod
model is used, even if is present.
ode
. Default is 1e-8,
lower than in lsoda
.
ode
. Default is 1e-10,
much lower than in lsoda
.
A matrix in the same format as the output of ode
.
SFO <- mkinmod(degradinol = list(type = "SFO")) # Compare solution types mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, solution_type = "analytical")#> time degradinol #> 1 0 100.0000000 #> 2 1 74.0818221 #> 3 2 54.8811636 #> 4 3 40.6569660 #> 5 4 30.1194212 #> 6 5 22.3130160 #> 7 6 16.5298888 #> 8 7 12.2456428 #> 9 8 9.0717953 #> 10 9 6.7205513 #> 11 10 4.9787068 #> 12 11 3.6883167 #> 13 12 2.7323722 #> 14 13 2.0241911 #> 15 14 1.4995577 #> 16 15 1.1108997 #> 17 16 0.8229747 #> 18 17 0.6096747 #> 19 18 0.4516581 #> 20 19 0.3345965 #> 21 20 0.2478752mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, solution_type = "deSolve")#> time degradinol #> 1 0 100.0000000 #> 2 1 74.0818221 #> 3 2 54.8811636 #> 4 3 40.6569660 #> 5 4 30.1194212 #> 6 5 22.3130160 #> 7 6 16.5298888 #> 8 7 12.2456428 #> 9 8 9.0717953 #> 10 9 6.7205513 #> 11 10 4.9787068 #> 12 11 3.6883167 #> 13 12 2.7323722 #> 14 13 2.0241911 #> 15 14 1.4995577 #> 16 15 1.1108996 #> 17 16 0.8229747 #> 18 17 0.6096747 #> 19 18 0.4516581 #> 20 19 0.3345965 #> 21 20 0.2478752mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, solution_type = "deSolve", use_compiled = FALSE)#> time degradinol #> 1 0 100.0000000 #> 2 1 74.0818221 #> 3 2 54.8811636 #> 4 3 40.6569660 #> 5 4 30.1194212 #> 6 5 22.3130160 #> 7 6 16.5298888 #> 8 7 12.2456428 #> 9 8 9.0717953 #> 10 9 6.7205513 #> 11 10 4.9787068 #> 12 11 3.6883167 #> 13 12 2.7323722 #> 14 13 2.0241911 #> 15 14 1.4995577 #> 16 15 1.1108996 #> 17 16 0.8229747 #> 18 17 0.6096747 #> 19 18 0.4516581 #> 20 19 0.3345965 #> 21 20 0.2478752mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, solution_type = "eigen")#> time degradinol #> 1 0 100.0000000 #> 2 1 74.0818221 #> 3 2 54.8811636 #> 4 3 40.6569660 #> 5 4 30.1194212 #> 6 5 22.3130160 #> 7 6 16.5298888 #> 8 7 12.2456428 #> 9 8 9.0717953 #> 10 9 6.7205513 #> 11 10 4.9787068 #> 12 11 3.6883167 #> 13 12 2.7323722 #> 14 13 2.0241911 #> 15 14 1.4995577 #> 16 15 1.1108997 #> 17 16 0.8229747 #> 18 17 0.6096747 #> 19 18 0.4516581 #> 20 19 0.3345965 #> 21 20 0.2478752# Compare integration methods to analytical solution mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, solution_type = "analytical")[21,]#> time degradinol #> 21 20 0.2478752mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, method = "lsoda")[21,]#> time degradinol #> 21 20 0.2478752mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, method = "ode45")[21,]#> time degradinol #> 21 20 0.2478752mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), 0:20, method = "rk4")[21,]#> time degradinol #> 21 20 0.2480043# rk4 is not as precise here # The number of output times used to make a lot of difference until the # default for atol was adjusted mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), seq(0, 20, by = 0.1))[201,]#> time degradinol #> 201 20 0.2478752mkinpredict(SFO, c(k_degradinol_sink = 0.3), c(degradinol = 100), seq(0, 20, by = 0.01))[2001,]#> time degradinol #> 2001 20 0.2478752# Check compiled model versions - they are faster than the eigenvalue based solutions! SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"), m1 = list(type = "SFO"))#>system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), solution_type = "eigen")[201,]))#> time parent m1 #> 201 20 4.978707 27.46227#> user system elapsed #> 0.020 0.012 0.005system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), solution_type = "deSolve")[201,]))#> time parent m1 #> 201 20 4.978707 27.46227#> user system elapsed #> 0.000 0.020 0.003system.time( print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01), c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), solution_type = "deSolve", use_compiled = FALSE)[201,]))#> time parent m1 #> 201 20 4.978707 27.46227#> user system elapsed #> 0.032 0.000 0.035