mmkin.Rd
This function calls mkinfit
on all combinations of models and
datasets specified in its first two arguments.
mmkin( models = c("SFO", "FOMC", "DFOP"), datasets, cores = round(detectCores()/2), cluster = NULL, ... )
models | Either a character vector of shorthand names like
|
---|---|
datasets | An optionally named list of datasets suitable as observed
data for |
cores | The number of cores to be used for multicore processing. This
is only used when the |
cluster | A cluster as returned by |
... | Further arguments that will be passed to |
A two-dimensional array
of mkinfit
objects that can be indexed using the model names for the first index (row index)
and the dataset names for the second index (column index).
[.mmkin
for subsetting, plot.mmkin
for
plotting.
# \dontrun{ m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"), M1 = mkinsub("SFO", "M2"), M2 = mkinsub("SFO"), use_of_ff = "max")#>m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"), M1 = mkinsub("SFO", "M2"), M2 = mkinsub("SFO"), use_of_ff = "max")#>models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin) datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data) names(datasets) <- paste("Dataset", 1:3) time_default <- system.time(fits.0 <- mmkin(models, datasets, quiet = TRUE)) time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE)) time_default#> User System verstrichen #> 16.471 0.352 5.654time_1#> User System verstrichen #> 19.578 0.000 19.590#> $ff #> parent_M1 parent_sink M1_M2 M1_sink #> 0.7340480 0.2659520 0.7505686 0.2494314 #> #> $distimes #> DT50 DT90 #> parent 0.8777689 2.915885 #> M1 2.3257452 7.725958 #> M2 33.7200890 112.015711 #># Use double brackets to extract a single mkinfit object, which will be plotted # by plot.mkinfit and can be plotted using plot_sep plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE)plot_sep(fits.0[[1, 1]]) # Plotting with mmkin (single brackets, extracting an mmkin object) does not # allow to plot the observed variables separately plot(fits.0[1, 1])# }