This function calls mkinfit on all combinations of models and datasets specified in its first two arguments.

mmkin(
  models = c("SFO", "FOMC", "DFOP"),
  datasets,
  cores = round(detectCores()/2),
  cluster = NULL,
  ...
)

Arguments

models

Either a character vector of shorthand names like c("SFO", "FOMC", "DFOP", "HS", "SFORB"), or an optionally named list of mkinmod objects.

datasets

An optionally named list of datasets suitable as observed data for mkinfit.

cores

The number of cores to be used for multicore processing. This is only used when the cluster argument is NULL. On Windows machines, cores > 1 is not supported, you need to use the cluster argument to use multiple logical processors.

cluster

A cluster as returned by makeCluster to be used for parallel execution.

...

Further arguments that will be passed to mkinfit.

Value

A two-dimensional array of mkinfit objects that can be indexed using the model names for the first index (row index) and the dataset names for the second index (column index).

See also

[.mmkin for subsetting, plot.mmkin for plotting.

Examples

# \dontrun{ m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"), M1 = mkinsub("SFO", "M2"), M2 = mkinsub("SFO"), use_of_ff = "max")
#> Successfully compiled differential equation model from auto-generated C code.
m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"), M1 = mkinsub("SFO", "M2"), M2 = mkinsub("SFO"), use_of_ff = "max")
#> Successfully compiled differential equation model from auto-generated C code.
models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin) datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data) names(datasets) <- paste("Dataset", 1:3) time_default <- system.time(fits.0 <- mmkin(models, datasets, quiet = TRUE)) time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE))
#> Warning: Optimisation did not converge: #> false convergence (8)
time_default
#> User System verstrichen #> 4.370 0.401 1.265
time_1
#> User System verstrichen #> 5.000 0.008 5.011
endpoints(fits.0[["SFO_lin", 2]])
#> $ff #> parent_M1 parent_sink M1_M2 M1_sink #> 0.7340478 0.2659522 0.7505691 0.2494309 #> #> $distimes #> DT50 DT90 #> parent 0.8777688 2.915885 #> M1 2.3257466 7.725963 #> M2 33.7200800 112.015681 #>
# plot.mkinfit handles rows or columns of mmkin result objects plot(fits.0[1, ])
plot(fits.0[1, ], obs_var = c("M1", "M2"))
plot(fits.0[, 1])
# Use double brackets to extract a single mkinfit object, which will be plotted # by plot.mkinfit and can be plotted using plot_sep plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE)
plot_sep(fits.0[[1, 1]]) # Plotting with mmkin (single brackets, extracting an mmkin object) does not # allow to plot the observed variables separately plot(fits.0[1, 1])
# }