This function returns degradation model parameters as well as error model parameters per default, in order to avoid working with a fitted model without considering the error structure that was assumed for the fit.
Usage
parms(object, ...)
# S3 method for mkinfit
parms(object, transformed = FALSE, errparms = TRUE, ...)
# S3 method for mmkin
parms(object, transformed = FALSE, errparms = TRUE, ...)
# S3 method for multistart
parms(object, exclude_failed = TRUE, ...)
# S3 method for saem.mmkin
parms(object, ci = FALSE, covariates = NULL, ...)Arguments
- object
- A fitted model object. 
- ...
- Not used 
- transformed
- Should the parameters be returned as used internally during the optimisation? 
- errparms
- Should the error model parameters be returned in addition to the degradation parameters? 
- exclude_failed
- For multistart objects, should rows for failed fits be removed from the returned parameter matrix? 
- ci
- Should a matrix with estimates and confidence interval boundaries be returned? If FALSE (default), a vector of estimates is returned if no covariates are given, otherwise a matrix of estimates is returned, with each column corresponding to a row of the data frame holding the covariates 
- covariates
- A data frame holding covariate values for which to return parameter values. Only has an effect if 'ci' is FALSE. 
Value
Depending on the object, a numeric vector of fitted model parameters, a matrix (e.g. for mmkin row objects), or a list of matrices (e.g. for mmkin objects with more than one row).
Examples
# mkinfit objects
fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
parms(fit)
#>   parent_0   k_parent      sigma 
#> 82.4921598  0.3060633  4.6730124 
parms(fit, transformed = TRUE)
#>     parent_0 log_k_parent        sigma 
#>    82.492160    -1.183963     4.673012 
# mmkin objects
ds <- lapply(experimental_data_for_UBA_2019[6:10],
 function(x) subset(x$data[c("name", "time", "value")]))
names(ds) <- paste("Dataset", 6:10)
# \dontrun{
fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
parms(fits["SFO", ])
#>            Dataset 6    Dataset 7  Dataset 8  Dataset 9  Dataset 10
#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
#> k_parent  0.05794659  0.009647805  0.2102974  0.1232258  0.00720421
#> sigma     5.15274487  7.040168584  3.6769645  6.4669234  6.50457673
parms(fits[, 2])
#> $SFO
#>             Dataset 7
#> parent_0 82.666781678
#> k_parent  0.009647805
#> sigma     7.040168584
#> 
#> $FOMC
#>           Dataset 7
#> parent_0 92.6837649
#> alpha     0.4967832
#> beta     14.1451255
#> sigma     1.9167519
#> 
#> $DFOP
#>             Dataset 7
#> parent_0 91.058971584
#> k1        0.044946770
#> k2        0.002868336
#> g         0.526942414
#> sigma     2.221302196
#> 
parms(fits)
#> $SFO
#>            Dataset 6    Dataset 7  Dataset 8  Dataset 9  Dataset 10
#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
#> k_parent  0.05794659  0.009647805  0.2102974  0.1232258  0.00720421
#> sigma     5.15274487  7.040168584  3.6769645  6.4669234  6.50457673
#> 
#> $FOMC
#>          Dataset 6  Dataset 7 Dataset 8 Dataset 9 Dataset 10
#> parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481458
#> alpha     1.338667  0.4967832  1.639099  1.074460  0.2805272
#> beta     13.033315 14.1451255  5.007077  4.397126  6.9052224
#> sigma     1.847671  1.9167519  1.066063  3.146056  1.6222778
#> 
#> $DFOP
#>            Dataset 6    Dataset 7   Dataset 8   Dataset 9   Dataset 10
#> parent_0 96.55213663 91.058971584 90.34509493 98.14858820 94.311323735
#> k1        0.21954588  0.044946770  0.41232288  0.31697588  0.080663857
#> k2        0.02957934  0.002868336  0.07581766  0.03260384  0.003425417
#> g         0.44845068  0.526942414  0.66091967  0.65322767  0.342652880
#> sigma     1.35690468  2.221302196  1.34169076  2.87159846  1.942067831
#> 
parms(fits, transformed = TRUE)
#> $SFO
#>              Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
#> parent_0     88.522754 82.666782 86.854731 91.777931  82.148095
#> log_k_parent -2.848234 -4.641025 -1.559232 -2.093737  -4.933090
#> sigma         5.152745  7.040169  3.676964  6.466923   6.504577
#> 
#> $FOMC
#>            Dataset 6  Dataset 7  Dataset 8   Dataset 9 Dataset 10
#> parent_0  95.5585751 92.6837649 90.7197870 98.38393898  94.848146
#> log_alpha  0.2916741 -0.6996015  0.4941466  0.07181816  -1.271085
#> log_beta   2.5675088  2.6493701  1.6108523  1.48095106   1.932278
#> sigma      1.8476712  1.9167519  1.0660627  3.14605557   1.622278
#> 
#> $DFOP
#>           Dataset 6  Dataset 7  Dataset 8  Dataset 9 Dataset 10
#> parent_0 96.5521366 91.0589716 90.3450949 98.1485882 94.3113237
#> log_k1   -1.5161940 -3.1022764 -0.8859486 -1.1489296 -2.5174647
#> log_k2   -3.5206791 -5.8540232 -2.5794240 -3.4233253 -5.6765322
#> g_qlogis -0.2069326  0.1078741  0.6673953  0.6332573 -0.6514943
#> sigma     1.3569047  2.2213022  1.3416908  2.8715985  1.9420678
#> 
# }