Lists model equations, initial parameter values, optimised parameters for fixed effects (population), random effects (deviations from the population mean) and residual error model, as well as the resulting endpoints such as formation fractions and DT50 values. Optionally (default is FALSE), the data are listed in full.
an object of class saem.mmkin
logical, indicating whether the full data should be included in the summary.
Should the summary be verbose?
logical, indicating whether DT50 and DT90 values should be included.
optional arguments passed to methods like print
.
an object of class summary.saem.mmkin
Number of digits to use for printing
The summary function returns a list based on the saemix::SaemixObjectobtained in the fit, with at least the following additional components
The saemix, mkin and R versions used
The dates where the fit and the summary were produced
The differential equations used in the degradation model
Was maximum or minimum use made of formation fractions
The data
Transformed parameters as used in the optimisation, with confidence intervals
Backtransformed parameters, with confidence intervals if available
Error model parameters with confidence intervals
The estimated formation fractions derived from the fitted model.
The DT50 and DT90 values for each observed variable.
If applicable, eigenvalues of SFORB components of the model.
The print method is called for its side effect, i.e. printing the summary.
# Generate five datasets following DFOP-SFO kinetics
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"), quiet = TRUE)
set.seed(1234)
k1_in <- rlnorm(5, log(0.1), 0.3)
k2_in <- rlnorm(5, log(0.02), 0.3)
g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
k_m1_in <- rlnorm(5, log(0.02), 0.3)
pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
mkinpredict(dfop_sfo,
c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
c(parent = 100, m1 = 0),
sampling_times)
}
ds_mean_dfop_sfo <- lapply(1:5, function(i) {
mkinpredict(dfop_sfo,
c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],
f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
c(parent = 100, m1 = 0),
sampling_times)
})
names(ds_mean_dfop_sfo) <- paste("ds", 1:5)
ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
add_err(ds,
sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
n = 1)[[1]]
})
# \dontrun{
# Evaluate using mmkin and saem
f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
quiet = TRUE, error_model = "tc", cores = 5)
f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
#>
#> Error in rxModelVars_(obj): Not compatible with STRSXP: [type=NULL].
summary(f_saem_dfop_sfo, data = TRUE)
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_saem_dfop_sfo' not found
# }