The transformations are intended to map parameters that should only take on restricted values to the full scale of real numbers. For kinetic rate constants and other paramters that can only take on positive values, a simple log transformation is used. For compositional parameters, such as the formations fractions that should always sum up to 1 and can not be negative, the ilr transformation is used.

The transformation of sets of formation fractions is fragile, as it supposes the same ordering of the components in forward and backward transformation. This is no problem for the internal use in mkinfit.

transform_odeparms(parms, mkinmod,
                   transform_rates = TRUE, transform_fractions = TRUE)
backtransform_odeparms(transparms, mkinmod,
                       transform_rates = TRUE, transform_fractions = TRUE)

Arguments

parms

Parameters of kinetic models as used in the differential equations.

transparms

Transformed parameters of kinetic models as used in the fitting procedure.

mkinmod

The kinetic model of class mkinmod, containing the names of the model variables that are needed for grouping the formation fractions before ilr transformation, the parameter names and the information if the pathway to sink is included in the model.

transform_rates

Boolean specifying if kinetic rate constants should be transformed in the model specification used in the fitting for better compliance with the assumption of normal distribution of the estimator. If TRUE, also alpha and beta parameters of the FOMC model are log-transformed, as well as k1 and k2 rate constants for the DFOP and HS models and the break point tb of the HS model.

transform_fractions

Boolean specifying if formation fractions constants should be transformed in the model specification used in the fitting for better compliance with the assumption of normal distribution of the estimator. The default (TRUE) is to do transformations. The g parameter of the DFOP and HS models are also transformed, as they can also be seen as compositional data. The transformation used for these transformations is the ilr transformation.

Value

A vector of transformed or backtransformed parameters with the same names as the original parameters.

Examples

SFO_SFO <- mkinmod( parent = list(type = "SFO", to = "m1", sink = TRUE), m1 = list(type = "SFO"))
#> Successfully compiled differential equation model from auto-generated C code.
# Fit the model to the FOCUS example dataset D using defaults fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)
#> Warning: Observations with value of zero were removed from the data
fit.s <- summary(fit)
#> Warning: Could not calculate correlation; no covariance matrix
# Transformed and backtransformed parameters print(fit.s$par, 3)
#> Estimate Std. Error Lower Upper #> parent_0 99.60 NA NA NA #> log_k_parent_sink -3.04 NA NA NA #> log_k_parent_m1 -2.98 NA NA NA #> log_k_m1_sink -5.25 NA NA NA #> sigma 3.13 NA NA NA
print(fit.s$bpar, 3)
#> Estimate se_notrans t value Pr(>t) Lower Upper #> parent_0 99.59848 NA NA NA NA NA #> k_parent_sink 0.04792 NA NA NA NA NA #> k_parent_m1 0.05078 NA NA NA NA NA #> k_m1_sink 0.00526 NA NA NA NA NA #> sigma 3.12550 NA NA NA NA NA
# Compare to the version without transforming rate parameters fit.2 <- mkinfit(SFO_SFO, FOCUS_2006_D, transform_rates = FALSE, quiet = TRUE)
#> Warning: Observations with value of zero were removed from the data
fit.2.s <- summary(fit.2)
#> Warning: Could not calculate correlation; no covariance matrix
print(fit.2.s$par, 3)
#> Estimate Std. Error Lower Upper #> parent_0 99.59848 NA NA NA #> k_parent_sink 0.04792 NA NA NA #> k_parent_m1 0.05078 NA NA NA #> k_m1_sink 0.00526 NA NA NA #> sigma 3.12550 NA NA NA
print(fit.2.s$bpar, 3)
#> Estimate se_notrans t value Pr(>t) Lower Upper #> parent_0 99.59848 NA NA NA NA NA #> k_parent_sink 0.04792 NA NA NA NA NA #> k_parent_m1 0.05078 NA NA NA NA NA #> k_m1_sink 0.00526 NA NA NA NA NA #> sigma 3.12550 NA NA NA NA NA
initials <- fit$start$value names(initials) <- rownames(fit$start) transformed <- fit$start_transformed$value names(transformed) <- rownames(fit$start_transformed) transform_odeparms(initials, SFO_SFO)
#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink #> 100.750000 -2.302585 -2.301586 -2.300587
backtransform_odeparms(transformed, SFO_SFO)
#> parent_0 k_parent_sink k_parent_m1 k_m1_sink #> 100.7500 0.1000 0.1001 0.1002
# The case of formation fractions SFO_SFO.ff <- mkinmod( parent = list(type = "SFO", to = "m1", sink = TRUE), m1 = list(type = "SFO"), use_of_ff = "max")
#> Successfully compiled differential equation model from auto-generated C code.
fit.ff <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, quiet = TRUE)
#> Warning: Observations with value of zero were removed from the data
fit.ff.s <- summary(fit.ff)
#> Warning: Could not calculate correlation; no covariance matrix
print(fit.ff.s$par, 3)
#> Estimate Std. Error Lower Upper #> parent_0 99.598 NA NA NA #> log_k_parent -2.316 NA NA NA #> log_k_m1 -5.248 NA NA NA #> f_parent_ilr_1 0.041 NA NA NA #> sigma 3.126 NA NA NA
print(fit.ff.s$bpar, 3)
#> Estimate se_notrans t value Pr(>t) Lower Upper #> parent_0 99.59848 NA NA NA NA NA #> k_parent 0.09870 NA NA NA NA NA #> k_m1 0.00526 NA NA NA NA NA #> f_parent_to_m1 0.51448 NA NA NA NA NA #> sigma 3.12550 NA NA NA NA NA
initials <- c("f_parent_to_m1" = 0.5) transformed <- transform_odeparms(initials, SFO_SFO.ff) backtransform_odeparms(transformed, SFO_SFO.ff)
#> f_parent_to_m1 #> 0.5
# And without sink SFO_SFO.ff.2 <- mkinmod( parent = list(type = "SFO", to = "m1", sink = FALSE), m1 = list(type = "SFO"), use_of_ff = "max")
#> Successfully compiled differential equation model from auto-generated C code.
fit.ff.2 <- mkinfit(SFO_SFO.ff.2, FOCUS_2006_D, quiet = TRUE)
#> Warning: Observations with value of zero were removed from the data
fit.ff.2.s <- summary(fit.ff.2)
#> Warning: Could not calculate correlation; no covariance matrix
print(fit.ff.2.s$par, 3)
#> Estimate Std. Error Lower Upper #> parent_0 84.79 NA NA NA #> log_k_parent -2.76 NA NA NA #> log_k_m1 -4.21 NA NA NA #> sigma 8.22 NA NA NA
print(fit.ff.2.s$bpar, 3)
#> Estimate se_notrans t value Pr(>t) Lower Upper #> parent_0 84.7916 NA NA NA NA NA #> k_parent 0.0635 NA NA NA NA NA #> k_m1 0.0148 NA NA NA NA NA #> sigma 8.2229 NA NA NA NA NA