Benchmark for a model that can also be solved with Eigenvalues

This evaluation is taken from the example section of mkinfit. When using an mkin version equal to or greater than 0.9-36 and a C compiler (gcc) is available, you will see a message that the model is being compiled from autogenerated C code when defining a model using mkinmod. The mkinmod() function checks for presence of the gcc compiler using

Sys.which("gcc")
##            gcc 
## "/usr/bin/gcc"

First, we build a simple degradation model for a parent compound with one metabolite.

library("mkin")
SFO_SFO <- mkinmod(
  parent = mkinsub("SFO", "m1"),
  m1 = mkinsub("SFO"))
## Successfully compiled differential equation model from auto-generated C code.

We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.

library("microbenchmark")
library("ggplot2")
mb.1 <- microbenchmark(
  "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, 
                                    solution_type = "deSolve", 
                                    use_compiled = FALSE, quiet = TRUE),
  "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, 
                               solution_type = "eigen", quiet = TRUE),
  "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, 
                                solution_type = "deSolve", quiet = TRUE),
  times = 3, control = list(warmup = 0))
## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(SFO_SFO,
## FOCUS_2006_D, : Could not measure overhead. Your clock might lack
## precision.
smb.1 <- summary(mb.1)
print(mb.1)
## Unit: milliseconds
##                   expr       min        lq      mean    median        uq
##  deSolve, not compiled 6438.0110 6444.1220 6460.7839 6450.2330 6472.1703
##       Eigenvalue based  885.8356  892.8422  908.1567  899.8489  919.3173
##      deSolve, compiled  717.8236  722.6525  738.3923  727.4815  748.6767
##        max neval cld
##  6494.1075     3   c
##   938.7858     3  b 
##   769.8719     3 a
autoplot(mb.1)

We see that using the compiled model is by a factor of 8.9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:

rownames(smb.1) <- smb.1$expr
smb.1["median"]/smb.1["deSolve, compiled", "median"]
##                         median
## deSolve, not compiled 8.866525
## Eigenvalue based      1.236937
## deSolve, compiled     1.000000

Benchmark for a model that can not be solved with Eigenvalues

This evaluation is also taken from the example section of mkinfit.

FOMC_SFO <- mkinmod(
  parent = mkinsub("FOMC", "m1"),
  m1 = mkinsub( "SFO"))
## Successfully compiled differential equation model from auto-generated C code.
mb.2 <- microbenchmark(
  "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, 
                                    use_compiled = FALSE, quiet = TRUE),
  "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
  times = 3, control = list(warmup = 0))
## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(FOMC_SFO,
## FOCUS_2006_D, : Could not measure overhead. Your clock might lack
## precision.
smb.2 <- summary(mb.2)
print(mb.2)
## Unit: seconds
##                   expr       min        lq      mean   median        uq
##  deSolve, not compiled 13.446530 13.475187 13.565657 13.50384 13.625221
##      deSolve, compiled  1.334123  1.348677  1.356064  1.36323  1.367035
##        max neval cld
##  13.746597     3   b
##   1.370839     3  a
smb.2["median"]/smb.2["deSolve, compiled", "median"]
##   median
## 1     NA
## 2     NA
autoplot(mb.2)

Here we get a performance benefit of a factor of 9.9 using the version of the differential equation model compiled from C code!

This vignette was built with mkin 0.9.44.9000 on

## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)
## CPU model: Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz