This evaluation is taken from the example section of mkinfit. When using an mkin version equal to or greater than 0.9-36 and a C compiler (gcc) is available, you will see a message that the model is being compiled from autogenerated C code when defining a model using mkinmod. The mkinmod()
function checks for presence of the gcc compiler using
Sys.which("gcc")
## gcc
## "/usr/bin/gcc"
First, we build a simple degradation model for a parent compound with one metabolite.
library("mkin")
SFO_SFO <- mkinmod(
parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"))
## Successfully compiled differential equation model from auto-generated C code.
We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.
library("microbenchmark")
library("ggplot2")
mb.1 <- microbenchmark(
"deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "deSolve",
use_compiled = FALSE, quiet = TRUE),
"Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "eigen", quiet = TRUE),
"deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "deSolve", quiet = TRUE),
times = 3, control = list(warmup = 0))
## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(SFO_SFO,
## FOCUS_2006_D, : Could not measure overhead. Your clock might lack
## precision.
smb.1 <- summary(mb.1)
print(mb.1)
## Unit: milliseconds
## expr min lq mean median uq
## deSolve, not compiled 6438.0110 6444.1220 6460.7839 6450.2330 6472.1703
## Eigenvalue based 885.8356 892.8422 908.1567 899.8489 919.3173
## deSolve, compiled 717.8236 722.6525 738.3923 727.4815 748.6767
## max neval cld
## 6494.1075 3 c
## 938.7858 3 b
## 769.8719 3 a
autoplot(mb.1)
We see that using the compiled model is by a factor of 8.9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:
rownames(smb.1) <- smb.1$expr
smb.1["median"]/smb.1["deSolve, compiled", "median"]
## median
## deSolve, not compiled 8.866525
## Eigenvalue based 1.236937
## deSolve, compiled 1.000000
This evaluation is also taken from the example section of mkinfit.
FOMC_SFO <- mkinmod(
parent = mkinsub("FOMC", "m1"),
m1 = mkinsub( "SFO"))
## Successfully compiled differential equation model from auto-generated C code.
mb.2 <- microbenchmark(
"deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D,
use_compiled = FALSE, quiet = TRUE),
"deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
times = 3, control = list(warmup = 0))
## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(FOMC_SFO,
## FOCUS_2006_D, : Could not measure overhead. Your clock might lack
## precision.
smb.2 <- summary(mb.2)
print(mb.2)
## Unit: seconds
## expr min lq mean median uq
## deSolve, not compiled 13.446530 13.475187 13.565657 13.50384 13.625221
## deSolve, compiled 1.334123 1.348677 1.356064 1.36323 1.367035
## max neval cld
## 13.746597 3 b
## 1.370839 3 a
smb.2["median"]/smb.2["deSolve, compiled", "median"]
## median
## 1 NA
## 2 NA
autoplot(mb.2)
Here we get a performance benefit of a factor of 9.9 using the version of the differential equation model compiled from C code!
This vignette was built with mkin 0.9.44.9000 on
## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 8 (jessie)
## CPU model: Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz