mmkin(models, datasets, cores = round(detectCores()/2), cluster = NULL, ...)
mkinmod
    objects.
  mkinfit.
  cluster argument is NULL.
  makeCluster to be used for parallel 
    execution.
  mkinfit. 
  This function calls mkinfit on all combinations of models and datasets
  specified in its first two arguments.
mkinfit objects that can be indexed using the model
  and dataset names as row and column indices.
## Not run: # m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"), # M1 = mkinsub("SFO", "M2"), # M2 = mkinsub("SFO"), use_of_ff = "max") # # m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"), # M1 = mkinsub("SFO", "M2"), # M2 = mkinsub("SFO"), use_of_ff = "max") # # models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin) # datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data) # names(datasets) <- paste("Dataset", 1:3) # # time_default <- system.time(fits.0 <- mmkin(models, datasets)) # time_1 <- system.time(fits.1 <- mmkin(models, datasets, cores = 1)) # # time_default # time_1 # # endpoints(fits[["SFO_lin", 2]]) # # # Plot.mkinfit handles rows or columns of mmkin result objects # plot(fits.0[1, ]) # plot(fits.0[1, ], obs_var = c("M1", "M2")) # plot(fits.0[, 1]) # # Use double brackets to extract a single mkinfit object, which will be plotted # # by plot.mkinfit # plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE) # # Plotting with mmkin (single brackets, extracting an mmkin object) does not # # allow to plot the observed variables separately # plot(fits.0[1, 1]) # ## End(Not run)