% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/FOMC.solution.R
\name{FOMC.solution}
\alias{FOMC.solution}
\title{First-Order Multi-Compartment kinetics}
\usage{
FOMC.solution(t, parent.0, alpha, beta)
}
\arguments{
\item{t}{Time.}

\item{parent.0}{Starting value for the response variable at time zero.}

\item{alpha}{Shape parameter determined by coefficient of variation of rate
constant values.}

\item{beta}{Location parameter.}
}
\value{
The value of the response variable at time \code{t}.
}
\description{
Function describing exponential decline from a defined starting value, with
a decreasing rate constant.
}
\details{
The form given here differs slightly from the original reference by
Gustafson and Holden (1990). The parameter \code{beta} corresponds to 1/beta
in the original equation.
}
\note{
The solution of the FOMC kinetic model reduces to the
  \code{\link{SFO.solution}} for large values of \code{alpha} and
  \code{beta} with \eqn{k = \frac{\beta}{\alpha}}{k = beta/alpha}.
}
\examples{

  plot(function(x) FOMC.solution(x, 100, 10, 2), 0, 2, ylim = c(0, 100))

}
\references{
FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence
  and Degradation Kinetics from Environmental Fate Studies on Pesticides in
  EU Registration} Report of the FOCUS Work Group on Degradation Kinetics,
  EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,
  \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}

  Gustafson DI and Holden LR (1990) Nonlinear pesticide dissipation in soil:
  A new model based on spatial variability. \emph{Environmental Science and
  Technology} \bold{24}, 1032-1038
}