% Generated by roxygen2: do not edit by hand % Please edit documentation in R/confint.mkinfit.R \name{confint.mkinfit} \alias{confint.mkinfit} \title{Confidence intervals for parameters of mkinfit objects} \usage{ \method{confint}{mkinfit}(object, parm, level = 0.95, alpha = 1 - level, cutoff, method = c("profile", "quadratic"), transformed = TRUE, backtransform = TRUE, cores = round(detectCores()/2), quiet = FALSE, ...) } \arguments{ \item{object}{An \code{\link{mkinfit}} object} \item{parm}{A vector of names of the parameters which are to be given confidence intervals. If missing, all parameters are considered.} \item{level}{The confidence level required} \item{alpha}{The allowed error probability, overrides 'level' if specified.} \item{cutoff}{Possibility to specify an alternative cutoff for the difference in the log-likelihoods at the confidence boundary. Specifying an explicit cutoff value overrides arguments 'level' and 'alpha'} \item{method}{The 'profile' method searches the parameter space for the cutoff of the confidence intervals by means of a likelihood ratio test. The 'quadratic' method approximates the likelihood function at the optimised parameters using the second term of the Taylor expansion, using a second derivative (hessian) contained in the object.} \item{transformed}{If the quadratic approximation is used, should it be applied to the likelihood based on the transformed parameters?} \item{backtransform}{If we approximate the likelihood in terms of the transformed parameters, should we backtransform the parameters with their confidence intervals?} \item{cores}{The number of cores to be used for multicore processing. This is only used when the \code{cluster} argument is \code{NULL}. On Windows machines, cores > 1 is not supported.} \item{quiet}{Should we suppress the message "Profiling the likelihood"} \item{\dots}{Not used} } \value{ A matrix with columns giving lower and upper confidence limits for each parameter. } \description{ The default method 'profile' is based on the profile likelihood for each parameter. The method uses two nested optimisations. The speed of the method could likely be improved by using the method of Venzon and Moolgavkar (1988). } \examples{ f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) confint(f, method = "quadratic") \dontrun{ confint(f, method = "profile") SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), quiet = TRUE) SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE) f_d_1 <- mkinfit(SFO_SFO, subset(FOCUS_2006_D, value != 0), quiet = TRUE) system.time(ci_profile <- confint(f_d_1, cores = 1, quiet = TRUE)) # The following does not save much time, as parent_0 takes up most of the time # system.time(ci_profile <- confint(f_d_1, cores = 5)) # system.time(ci_profile <- confint(f_d_1, # c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = 1)) # If we exclude parent_0 (the confidence of which is often of minor interest), we get a nice # performance improvement from about 30 seconds to about 12 seconds # system.time(ci_profile_no_parent_0 <- confint(f_d_1, # c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = 4)) ci_profile ci_quadratic_transformed <- confint(f_d_1, method = "quadratic") ci_quadratic_transformed ci_quadratic_untransformed <- confint(f_d_1, method = "quadratic", transformed = FALSE) ci_quadratic_untransformed # Against the expectation based on Bates and Watts (1988), the confidence # intervals based on the internal parameter transformation are less # congruent with the likelihood based intervals. Note the superiority of the # interval based on the untransformed fit for k_m1_sink rel_diffs_transformed <- abs((ci_quadratic_transformed - ci_profile)/ci_profile) rel_diffs_untransformed <- abs((ci_quadratic_untransformed - ci_profile)/ci_profile) rel_diffs_transformed rel_diffs_untransformed # Set the number of cores for further examples if (identical(Sys.getenv("NOT_CRAN"), "true")) { n_cores <- parallel::detectCores() - 1 } else { n_cores <- 1 } if (Sys.getenv("TRAVIS") != "") n_cores = 1 if (Sys.info()["sysname"] == "Windows") n_cores = 1 # Investigate a case with formation fractions f_d_2 <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), quiet = TRUE) ci_profile_ff <- confint(f_d_2, cores = n_cores) ci_profile_ff ci_quadratic_transformed_ff <- confint(f_d_2, method = "quadratic") ci_quadratic_transformed_ff ci_quadratic_untransformed_ff <- confint(f_d_2, method = "quadratic", transformed = FALSE) ci_quadratic_untransformed_ff rel_diffs_transformed_ff <- abs((ci_quadratic_transformed_ff - ci_profile_ff)/ci_profile_ff) rel_diffs_untransformed_ff <- abs((ci_quadratic_untransformed_ff - ci_profile_ff)/ci_profile_ff) # While the confidence interval for the parent rate constant is closer to # the profile based interval when using the internal parameter # transformation, the intervals for the other parameters are 'better # without internal parameter transformation. rel_diffs_transformed_ff rel_diffs_untransformed_ff # The profiling for the following fit does not finish in a reasonable time, # therefore we use the quadratic approximation m_synth_DFOP_par <- mkinmod(parent = mkinsub("DFOP", c("M1", "M2")), M1 = mkinsub("SFO"), M2 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE) DFOP_par_c <- synthetic_data_for_UBA_2014[[12]]$data f_tc_2 <- mkinfit(m_synth_DFOP_par, DFOP_par_c, error_model = "tc", error_model_algorithm = "direct", quiet = TRUE) confint(f_tc_2, method = "quadratic") confint(f_tc_2, "parent_0", method = "quadratic") } } \references{ Bates DM and Watts GW (1988) Nonlinear regression analysis & its applications Pawitan Y (2013) In all likelihood - Statistical modelling and inference using likelihood. Clarendon Press, Oxford. Venzon DJ and Moolgavkar SH (1988) A Method for Computing Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37, 87–94. }