% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ilr.R \name{ilr} \alias{ilr} \alias{invilr} \title{Function to perform isometric log-ratio transformation} \usage{ ilr(x) invilr(x) } \arguments{ \item{x}{A numeric vector. Naturally, the forward transformation is only sensible for vectors with all elements being greater than zero.} } \value{ The result of the forward or backward transformation. The returned components always sum to 1 for the case of the inverse log-ratio transformation. } \description{ This implementation is a special case of the class of isometric log-ratio transformations. } \examples{ # Order matters ilr(c(0.1, 1, 10)) ilr(c(10, 1, 0.1)) # Equal entries give ilr transformations with zeros as elements ilr(c(3, 3, 3)) # Almost equal entries give small numbers ilr(c(0.3, 0.4, 0.3)) # Only the ratio between the numbers counts, not their sum invilr(ilr(c(0.7, 0.29, 0.01))) invilr(ilr(2.1 * c(0.7, 0.29, 0.01))) # Inverse transformation of larger numbers gives unequal elements invilr(-10) invilr(c(-10, 0)) # The sum of the elements of the inverse ilr is 1 sum(invilr(c(-10, 0))) # This is why we do not need all elements of the inverse transformation to go back: a <- c(0.1, 0.3, 0.5) b <- invilr(a) length(b) # Four elements ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5) } \references{ Peter Filzmoser, Karel Hron (2008) Outlier Detection for Compositional Data Using Robust Methods. Math Geosci 40 233-248 } \seealso{ Another implementation can be found in R package \code{robCompositions}. } \author{ René Lehmann and Johannes Ranke } \keyword{manip}