\name{logistic.solution} \alias{logistic.solution} \title{ Logistic kinetics } \description{ Function describing exponential decline from a defined starting value, with an increasing rate constant, supposedly caused by microbial growth } \usage{ logistic.solution(t, parent.0, kmax, k0, r) } \arguments{ \item{t}{ Time. } \item{parent.0}{ Starting value for the response variable at time zero. } \item{kmax}{ Maximum rate constant. } \item{k0}{ Minumum rate constant effective at time zero. } \item{r}{ Growth rate of the increase in the rate constant. } } \note{ The solution of the logistic model reduces to the \code{\link{SFO.solution}} if \code{k0} is equal to \code{kmax}. } \value{ The value of the response variable at time \code{t}. } \references{ FOCUS (2014) \dQuote{Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration} Report of the FOCUS Work Group on Degradation Kinetics, Version 1.1, 18 December 2014 \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics} } \examples{ # Reproduce the plot on page 57 of FOCUS (2014) plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2), from = 0, to = 100, ylim = c(0, 100), xlab = "Time", ylab = "Residue") plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4), from = 0, to = 100, add = TRUE, lty = 2, col = 2) plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8), from = 0, to = 100, add = TRUE, lty = 3, col = 3) plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2), from = 0, to = 100, add = TRUE, lty = 4, col = 4) plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2), from = 0, to = 100, add = TRUE, lty = 5, col = 5) legend("topright", inset = 0.05, legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08), ", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)), lty = 1:5, col = 1:5) # Fit with synthetic data logistic <- mkinmod(parent = mkinsub("logistic")) sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2) d_logistic <- mkinpredict(logistic, parms_logistic, c(parent = 100), sampling_times) d_2_1 <- add_err(d_logistic, sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07), n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]] m <- mkinfit("logistic", d_2_1, quiet = TRUE) plot_sep(m) summary(m)$bpar endpoints(m)$distimes } \keyword{ manip }