% Generated by roxygen2: do not edit by hand % Please edit documentation in R/summary.nlme.mmkin.R \name{summary.nlme.mmkin} \alias{summary.nlme.mmkin} \alias{print.summary.nlme.mmkin} \title{Summary method for class "nlme.mmkin"} \usage{ \method{summary}{nlme.mmkin}( object, data = FALSE, verbose = FALSE, distimes = TRUE, alpha = 0.05, ... ) \method{print}{summary.nlme.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) } \arguments{ \item{object}{an object of class \link{nlme.mmkin}} \item{data}{logical, indicating whether the full data should be included in the summary.} \item{verbose}{Should the summary be verbose?} \item{distimes}{logical, indicating whether DT50 and DT90 values should be included.} \item{alpha}{error level for confidence interval estimation from the t distribution} \item{\dots}{optional arguments passed to methods like \code{print}.} \item{x}{an object of class \link{summary.nlme.mmkin}} \item{digits}{Number of digits to use for printing} } \value{ The summary function returns a list based on the \link{nlme} object obtained in the fit, with at least the following additional components \item{nlmeversion, mkinversion, Rversion}{The nlme, mkin and R versions used} \item{date.fit, date.summary}{The dates where the fit and the summary were produced} \item{diffs}{The differential equations used in the degradation model} \item{use_of_ff}{Was maximum or minimum use made of formation fractions} \item{data}{The data} \item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals} \item{confint_back}{Backtransformed parameters, with confidence intervals if available} \item{ff}{The estimated formation fractions derived from the fitted model.} \item{distimes}{The DT50 and DT90 values for each observed variable.} \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.} The print method is called for its side effect, i.e. printing the summary. } \description{ Lists model equations, initial parameter values, optimised parameters for fixed effects (population), random effects (deviations from the population mean) and residual error model, as well as the resulting endpoints such as formation fractions and DT50 values. Optionally (default is FALSE), the data are listed in full. } \examples{ # Generate five datasets following SFO kinetics sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) dt50_sfo_in_pop <- 50 k_in_pop <- log(2) / dt50_sfo_in_pop set.seed(1234) k_in <- rlnorm(5, log(k_in_pop), 0.5) SFO <- mkinmod(parent = mkinsub("SFO")) pred_sfo <- function(k) { mkinpredict(SFO, c(k_parent = k), c(parent = 100), sampling_times) } ds_sfo_mean <- lapply(k_in, pred_sfo) names(ds_sfo_mean) <- paste("ds", 1:5) set.seed(12345) ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) { add_err(ds, sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2), n = 1)[[1]] }) \dontrun{ # Evaluate using mmkin and nlme library(nlme) f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1) f_nlme <- nlme(f_mmkin) summary(f_nlme, data = TRUE) } } \author{ Johannes Ranke for the mkin specific parts José Pinheiro and Douglas Bates for the components inherited from nlme }