<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title>Example evaluation of FOCUS Laboratory Data L1 to L3</title> <script type="text/javascript"> window.onload = function() { var imgs = document.getElementsByTagName('img'), i, img; for (i = 0; i < imgs.length; i++) { img = imgs[i]; // center an image if it is the only element of its parent if (img.parentElement.childElementCount === 1) img.parentElement.style.textAlign = 'center'; } }; </script> <!-- Styles for R syntax highlighter --> <style type="text/css"> pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: #990073 } pre .number { color: #099; } pre .comment { color: #998; font-style: italic } pre .keyword { color: #900; font-weight: bold } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: #d14; } </style> <!-- R syntax highlighter --> <script type="text/javascript"> var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}}; hljs.initHighlightingOnLoad(); </script> <style type="text/css"> body, td { font-family: sans-serif; background-color: white; font-size: 13px; } body { max-width: 800px; margin: auto; padding: 1em; line-height: 20px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre, img { max-width: 100%; } pre { overflow-x: auto; } pre code { display: block; padding: 0.5em; } code { font-size: 92%; border: 1px solid #ccc; } code[class] { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } </style> </head> <body> <!-- %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Example evaluation of FOCUS Laboratory Data L1 to L3} --> <h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1> <h2>Laboratory Data L1</h2> <p>The following code defines example dataset L1 from the FOCUS kinetics report, p. 284:</p> <pre><code class="r">library("mkin") </code></pre> <pre><code>## Loading required package: minpack.lm ## Loading required package: rootSolve </code></pre> <pre><code class="r">FOCUS_2006_L1 = data.frame( t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2), parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6, 72.0, 71.9, 50.3, 59.4, 47.0, 45.1, 27.7, 27.3, 10.0, 10.4, 2.9, 4.0)) FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1) </code></pre> <p>Here we use the assumptions of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report.</p> <p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>SFO</code> for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report. </p> <pre><code class="r">m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet=TRUE) summary(m.L1.SFO) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:15 2014 ## Date of summary: Wed Oct 15 00:58:15 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 37 model solutions performed in 0.203 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 89.85 state ## k_parent_sink 0.10 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 89.850 -Inf Inf ## log_k_parent_sink -2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) ## parent_0 92.50 1.3700 89.60 95.40 67.6 4.34e-21 ## log_k_parent_sink -2.35 0.0406 -2.43 -2.26 -57.9 5.15e-20 ## Pr(>t) ## parent_0 2.17e-21 ## log_k_parent_sink 2.58e-20 ## ## Parameter correlation: ## parent_0 log_k_parent_sink ## parent_0 1.000 0.625 ## log_k_parent_sink 0.625 1.000 ## ## Residual standard error: 2.95 on 16 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 92.5000 89.6000 95.400 ## k_parent_sink 0.0956 0.0877 0.104 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 3.42 2 7 ## parent 3.42 2 7 ## ## Resulting formation fractions: ## ff ## parent_sink 1 ## ## Estimated disappearance times: ## DT50 DT90 ## parent 7.25 24.1 ## ## Data: ## time variable observed predicted residual ## 0 parent 88.3 92.47 -4.171 ## 0 parent 91.4 92.47 -1.071 ## 1 parent 85.6 84.04 1.561 ## 1 parent 84.5 84.04 0.461 ## 2 parent 78.9 76.38 2.524 ## 2 parent 77.6 76.38 1.224 ## 3 parent 72.0 69.41 2.588 ## 3 parent 71.9 69.41 2.488 ## 5 parent 50.3 57.33 -7.030 ## 5 parent 59.4 57.33 2.070 ## 7 parent 47.0 47.35 -0.352 ## 7 parent 45.1 47.35 -2.252 ## 14 parent 27.7 24.25 3.453 ## 14 parent 27.3 24.25 3.053 ## 21 parent 10.0 12.42 -2.416 ## 21 parent 10.4 12.42 -2.016 ## 30 parent 2.9 5.25 -2.351 ## 30 parent 4.0 5.25 -1.251 </code></pre> <p>A plot of the fit is obtained with the plot function for mkinfit objects.</p> <pre><code class="r">plot(m.L1.SFO) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-4"/> The residual plot can be easily obtained by</p> <pre><code class="r">mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time") </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p> <p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level is checked.</p> <pre><code class="r">m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE) </code></pre> <pre><code>## Warning: Optimisation by method Port did not converge. ## Convergence code is 1 </code></pre> <pre><code class="r">summary(m.L1.FOMC, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:16 2014 ## Date of summary: Wed Oct 15 00:58:16 2014 ## ## ## Warning: Optimisation by method Port did not converge. ## Convergence code is 1 ## ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 188 model solutions performed in 1.011 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 89.85 state ## alpha 1.00 deparm ## beta 10.00 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 89.850 -Inf Inf ## log_alpha 0.000 -Inf Inf ## log_beta 2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) ## parent_0 92.5 1.42 89.4 95.5 65.00 8.32e-20 4.16e-20 ## log_alpha 15.4 15.10 -16.7 47.6 1.02 3.22e-01 1.61e-01 ## log_beta 17.8 15.10 -14.4 49.9 1.18 2.57e-01 1.28e-01 ## ## Parameter correlation: ## parent_0 log_alpha log_beta ## parent_0 1.000 0.113 0.111 ## log_alpha 0.113 1.000 1.000 ## log_beta 0.111 1.000 1.000 ## ## Residual standard error: 3.05 on 15 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 9.25e+01 8.94e+01 9.55e+01 ## alpha 5.04e+06 5.51e-08 4.62e+20 ## beta 5.28e+07 5.73e-07 4.86e+21 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 3.62 3 6 ## parent 3.62 3 6 ## ## Estimated disappearance times: ## DT50 DT90 DT50back ## parent 7.25 24.1 7.25 </code></pre> <p>Due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the chi<sup>2</sup> error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters <code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have p-values for the two sided t-test of 0.18 and 0.125, and their correlation is 1.000, indicating that the model is overparameterised. </p> <p>The chi<sup>2</sup> error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same chi<sup>2</sup> error levels as the kinfit package. Furthermore, the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI is a widely used standard package in this field. </p> <h2>Laboratory Data L2</h2> <p>The following code defines example dataset L2 from the FOCUS kinetics report, p. 287:</p> <pre><code class="r">FOCUS_2006_L2 = data.frame( t = rep(c(0, 1, 3, 7, 14, 28), each = 2), parent = c(96.1, 91.8, 41.4, 38.7, 19.3, 22.3, 4.6, 4.6, 2.6, 1.2, 0.3, 0.6)) FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2) </code></pre> <p>Again, the SFO model is fitted and a summary is obtained:</p> <pre><code class="r">m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE) summary(m.L2.SFO) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:17 2014 ## Date of summary: Wed Oct 15 00:58:17 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 41 model solutions performed in 0.22 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 93.95 state ## k_parent_sink 0.10 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 93.950 -Inf Inf ## log_k_parent_sink -2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) ## parent_0 91.500 3.810 83.000 99.900 24.00 3.55e-10 ## log_k_parent_sink -0.411 0.107 -0.651 -0.172 -3.83 3.33e-03 ## Pr(>t) ## parent_0 1.77e-10 ## log_k_parent_sink 1.66e-03 ## ## Parameter correlation: ## parent_0 log_k_parent_sink ## parent_0 1.00 0.43 ## log_k_parent_sink 0.43 1.00 ## ## Residual standard error: 5.51 on 10 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 91.500 83.000 99.900 ## k_parent_sink 0.663 0.522 0.842 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 14.4 2 4 ## parent 14.4 2 4 ## ## Resulting formation fractions: ## ff ## parent_sink 1 ## ## Estimated disappearance times: ## DT50 DT90 ## parent 1.05 3.47 ## ## Data: ## time variable observed predicted residual ## 0 parent 96.1 9.15e+01 4.634 ## 0 parent 91.8 9.15e+01 0.334 ## 1 parent 41.4 4.71e+01 -5.739 ## 1 parent 38.7 4.71e+01 -8.439 ## 3 parent 19.3 1.25e+01 6.779 ## 3 parent 22.3 1.25e+01 9.779 ## 7 parent 4.6 8.83e-01 3.717 ## 7 parent 4.6 8.83e-01 3.717 ## 14 parent 2.6 8.53e-03 2.591 ## 14 parent 1.2 8.53e-03 1.191 ## 28 parent 0.3 7.96e-07 0.300 ## 28 parent 0.6 7.96e-07 0.600 </code></pre> <p>The chi<sup>2</sup> error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit and the residuals.</p> <pre><code class="r">par(mfrow = c(2, 1)) plot(m.L2.SFO) mkinresplot(m.L2.SFO) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p> <p>In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.</p> <p>We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a priori</em> why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.</p> <p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level is checked.</p> <pre><code class="r">m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE) par(mfrow = c(2, 1)) plot(m.L2.FOMC) mkinresplot(m.L2.FOMC) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p> <pre><code class="r">summary(m.L2.FOMC, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:17 2014 ## Date of summary: Wed Oct 15 00:58:17 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 81 model solutions performed in 0.438 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 93.95 state ## alpha 1.00 deparm ## beta 10.00 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 93.950 -Inf Inf ## log_alpha 0.000 -Inf Inf ## log_beta 2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) ## parent_0 93.800 1.860 89.600 98.000 50.500 2.35e-12 1.17e-12 ## log_alpha 0.318 0.187 -0.104 0.740 1.700 1.23e-01 6.14e-02 ## log_beta 0.210 0.294 -0.456 0.876 0.714 4.93e-01 2.47e-01 ## ## Parameter correlation: ## parent_0 log_alpha log_beta ## parent_0 1.0000 -0.0955 -0.186 ## log_alpha -0.0955 1.0000 0.976 ## log_beta -0.1863 0.9757 1.000 ## ## Residual standard error: 2.63 on 9 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 93.80 89.600 98.0 ## alpha 1.37 0.901 2.1 ## beta 1.23 0.634 2.4 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 6.2 3 3 ## parent 6.2 3 3 ## ## Estimated disappearance times: ## DT50 DT90 DT50back ## parent 0.809 5.36 1.61 </code></pre> <p>The error level at which the chi<sup>2</sup> test passes is much lower in this case. Therefore, the FOMC model provides a better description of the data, as less experimental error has to be assumed in order to explain the data.</p> <p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level. </p> <pre><code class="r">m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE) plot(m.L2.DFOP) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p> <p>Here, the default starting parameters for the DFOP model obviously do not lead to a reasonable solution. Therefore the fit is repeated with different starting parameters.</p> <pre><code class="r">m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, parms.ini = c(k1 = 1, k2 = 0.01, g = 0.8), quiet=TRUE) plot(m.L2.DFOP) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p> <pre><code class="r">summary(m.L2.DFOP, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:21 2014 ## Date of summary: Wed Oct 15 00:58:21 2014 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * ## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * ## time))) * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 336 model solutions performed in 1.844 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 93.95 state ## k1 1.00 deparm ## k2 0.01 deparm ## g 0.80 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 93.9500 -Inf Inf ## log_k1 0.0000 -Inf Inf ## log_k2 -4.6052 -Inf Inf ## g_ilr 0.9803 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) ## parent_0 93.900 NA NA NA NA NA NA ## log_k1 3.120 NA NA NA NA NA NA ## log_k2 -1.090 NA NA NA NA NA NA ## g_ilr -0.282 NA NA NA NA NA NA ## ## Parameter correlation: ## Could not estimate covariance matrix; singular system: ## ## Residual standard error: 1.73 on 8 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 93.900 NA NA ## k1 22.700 NA NA ## k2 0.337 NA NA ## g 0.402 NA NA ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 2.53 4 2 ## parent 2.53 4 2 ## ## Estimated disappearance times: ## DT50 DT90 DT50_k1 DT50_k2 ## parent NA NA 0.0306 2.06 </code></pre> <p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi<sup>2</sup> error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.</p> <h2>Laboratory Data L3</h2> <p>The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.</p> <pre><code class="r">FOCUS_2006_L3 = data.frame( t = c(0, 3, 7, 14, 30, 60, 91, 120), parent = c(97.8, 60, 51, 43, 35, 22, 15, 12)) FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3) </code></pre> <p>SFO model, summary and plot:</p> <pre><code class="r">m.L3.SFO <- mkinfit("SFO", FOCUS_2006_L3_mkin, quiet = TRUE) plot(m.L3.SFO) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-14"/> </p> <pre><code class="r">summary(m.L3.SFO) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:22 2014 ## Date of summary: Wed Oct 15 00:58:22 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 43 model solutions performed in 0.232 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 97.8 state ## k_parent_sink 0.1 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 97.800 -Inf Inf ## log_k_parent_sink -2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) ## parent_0 74.90 8.460 54.20 95.60 8.85 0.000116 ## log_k_parent_sink -3.68 0.326 -4.48 -2.88 -11.30 0.000029 ## Pr(>t) ## parent_0 5.78e-05 ## log_k_parent_sink 1.45e-05 ## ## Parameter correlation: ## parent_0 log_k_parent_sink ## parent_0 1.000 0.548 ## log_k_parent_sink 0.548 1.000 ## ## Residual standard error: 12.9 on 6 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 74.9000 54.2000 95.6000 ## k_parent_sink 0.0253 0.0114 0.0561 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 21.2 2 6 ## parent 21.2 2 6 ## ## Resulting formation fractions: ## ff ## parent_sink 1 ## ## Estimated disappearance times: ## DT50 DT90 ## parent 27.4 91.1 ## ## Data: ## time variable observed predicted residual ## 0 parent 97.8 74.87 22.9281 ## 3 parent 60.0 69.41 -9.4061 ## 7 parent 51.0 62.73 -11.7340 ## 14 parent 43.0 52.56 -9.5638 ## 30 parent 35.0 35.08 -0.0839 ## 60 parent 22.0 16.44 5.5602 ## 91 parent 15.0 7.51 7.4887 ## 120 parent 12.0 3.61 8.3903 </code></pre> <p>The chi<sup>2</sup> error level of 21% as well as the plot suggest that the model does not fit very well. </p> <p>The FOMC model performs better:</p> <pre><code class="r">m.L3.FOMC <- mkinfit("FOMC", FOCUS_2006_L3_mkin, quiet = TRUE) plot(m.L3.FOMC) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p> <pre><code class="r">summary(m.L3.FOMC, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:22 2014 ## Date of summary: Wed Oct 15 00:58:22 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 83 model solutions performed in 0.442 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 97.8 state ## alpha 1.0 deparm ## beta 10.0 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 97.800 -Inf Inf ## log_alpha 0.000 -Inf Inf ## log_beta 2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) ## parent_0 97.000 4.550 85.3 109.000 21.30 4.22e-06 2.11e-06 ## log_alpha -0.862 0.170 -1.3 -0.424 -5.06 3.91e-03 1.96e-03 ## log_beta 0.619 0.474 -0.6 1.840 1.31 2.49e-01 1.24e-01 ## ## Parameter correlation: ## parent_0 log_alpha log_beta ## parent_0 1.000 -0.151 -0.427 ## log_alpha -0.151 1.000 0.911 ## log_beta -0.427 0.911 1.000 ## ## Residual standard error: 4.57 on 5 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 97.000 85.300 109.000 ## alpha 0.422 0.273 0.655 ## beta 1.860 0.549 6.290 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 7.32 3 5 ## parent 7.32 3 5 ## ## Estimated disappearance times: ## DT50 DT90 DT50back ## parent 7.73 431 130 </code></pre> <p>The error level at which the chi<sup>2</sup> test passes is 7% in this case.</p> <p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level considerably:</p> <pre><code class="r">m.L3.DFOP <- mkinfit("DFOP", FOCUS_2006_L3_mkin, quiet = TRUE) plot(m.L3.DFOP) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-16"/> </p> <pre><code class="r">summary(m.L3.DFOP, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:23 2014 ## Date of summary: Wed Oct 15 00:58:23 2014 ## ## Equations: ## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * ## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * ## time))) * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 137 model solutions performed in 0.778 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 97.80 state ## k1 0.10 deparm ## k2 0.01 deparm ## g 0.50 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 97.800 -Inf Inf ## log_k1 -2.303 -Inf Inf ## log_k2 -4.605 -Inf Inf ## g_ilr 0.000 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) ## parent_0 97.700 1.4400 93.800 102.0000 68.00 2.81e-07 1.40e-07 ## log_k1 -0.661 0.1330 -1.030 -0.2910 -4.96 7.72e-03 3.86e-03 ## log_k2 -4.290 0.0590 -4.450 -4.1200 -72.60 2.15e-07 1.08e-07 ## g_ilr -0.123 0.0512 -0.265 0.0193 -2.40 7.43e-02 3.72e-02 ## ## Parameter correlation: ## parent_0 log_k1 log_k2 g_ilr ## parent_0 1.0000 0.164 0.0131 0.425 ## log_k1 0.1640 1.000 0.4648 -0.553 ## log_k2 0.0131 0.465 1.0000 -0.663 ## g_ilr 0.4253 -0.553 -0.6631 1.000 ## ## Residual standard error: 1.44 on 4 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 97.7000 93.8000 102.0000 ## k1 0.5160 0.3560 0.7480 ## k2 0.0138 0.0117 0.0162 ## g 0.4570 0.4070 0.5070 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 2.23 4 4 ## parent 2.23 4 4 ## ## Estimated disappearance times: ## DT50 DT90 DT50_k1 DT50_k2 ## parent 7.46 123 1.34 50.4 </code></pre> <p>Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the chi<sup>2</sup> error level criterion for laboratory data L3.</p> <p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter <code>g</code> is quite narrow.</p> <h2>Laboratory Data L4</h2> <p>The following code defines example dataset L4 from the FOCUS kinetics report, p. 293:</p> <pre><code class="r">FOCUS_2006_L4 = data.frame( t = c(0, 3, 7, 14, 30, 60, 91, 120), parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0)) FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4) </code></pre> <p>SFO model, summary and plot:</p> <pre><code class="r">m.L4.SFO <- mkinfit("SFO", FOCUS_2006_L4_mkin, quiet = TRUE) plot(m.L4.SFO) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-18"/> </p> <pre><code class="r">summary(m.L4.SFO, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:24 2014 ## Date of summary: Wed Oct 15 00:58:24 2014 ## ## Equations: ## d_parent = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 46 model solutions performed in 0.246 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 96.6 state ## k_parent_sink 0.1 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 96.600 -Inf Inf ## log_k_parent_sink -2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) ## parent_0 96.40 1.95 91.70 101.00 49.5 4.57e-09 ## log_k_parent_sink -5.03 0.08 -5.23 -4.83 -62.9 1.09e-09 ## Pr(>t) ## parent_0 2.28e-09 ## log_k_parent_sink 5.44e-10 ## ## Parameter correlation: ## parent_0 log_k_parent_sink ## parent_0 1.000 0.587 ## log_k_parent_sink 0.587 1.000 ## ## Residual standard error: 3.65 on 6 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 96.40000 91.70000 1.01e+02 ## k_parent_sink 0.00654 0.00538 7.95e-03 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 3.29 2 6 ## parent 3.29 2 6 ## ## Resulting formation fractions: ## ff ## parent_sink 1 ## ## Estimated disappearance times: ## DT50 DT90 ## parent 106 352 </code></pre> <p>The chi<sup>2</sup> error level of 3.3% as well as the plot suggest that the model fits very well. </p> <p>The FOMC model for comparison:</p> <pre><code class="r">m.L4.FOMC <- mkinfit("FOMC", FOCUS_2006_L4_mkin, quiet = TRUE) plot(m.L4.FOMC) </code></pre> <p><img src="" alt="plot of chunk unnamed-chunk-19"/> </p> <pre><code class="r">summary(m.L4.FOMC, data = FALSE) </code></pre> <pre><code>## mkin version: 0.9.34 ## R version: 3.1.1 ## Date of fit: Wed Oct 15 00:58:24 2014 ## Date of summary: Wed Oct 15 00:58:24 2014 ## ## Equations: ## d_parent = - (alpha/beta) * ((time/beta) + 1)^-1 * parent ## ## Model predictions using solution type analytical ## ## Fitted with method Port using 66 model solutions performed in 0.359 s ## ## Weighting: none ## ## Starting values for parameters to be optimised: ## value type ## parent_0 96.6 state ## alpha 1.0 deparm ## beta 10.0 deparm ## ## Starting values for the transformed parameters actually optimised: ## value lower upper ## parent_0 96.600 -Inf Inf ## log_alpha 0.000 -Inf Inf ## log_beta 2.303 -Inf Inf ## ## Fixed parameter values: ## None ## ## Optimised, transformed parameters: ## Estimate Std. Error Lower Upper t value Pr(>|t|) Pr(>t) ## parent_0 99.100 1.680 94.80 103.000 59.000 2.64e-08 1.32e-08 ## log_alpha -0.351 0.372 -1.31 0.607 -0.941 3.90e-01 1.95e-01 ## log_beta 4.170 0.564 2.73 5.620 7.410 7.06e-04 3.53e-04 ## ## Parameter correlation: ## parent_0 log_alpha log_beta ## parent_0 1.000 -0.536 -0.608 ## log_alpha -0.536 1.000 0.991 ## log_beta -0.608 0.991 1.000 ## ## Residual standard error: 2.31 on 5 degrees of freedom ## ## Backtransformed parameters: ## Estimate Lower Upper ## parent_0 99.100 94.80 103.00 ## alpha 0.704 0.27 1.83 ## beta 65.000 15.30 277.00 ## ## Chi2 error levels in percent: ## err.min n.optim df ## All data 2.03 3 5 ## parent 2.03 3 5 ## ## Estimated disappearance times: ## DT50 DT90 DT50back ## parent 109 1644 495 </code></pre> <p>The error level at which the chi<sup>2</sup> test passes is slightly lower for the FOMC model. However, the difference appears negligible.</p> </body> </html>