Each system is characterized by the operating system type, the CPU type, the mkin version, and, as in June 2022 the current R version lead to worse performance, the R version. A compiler was available, so if no analytical solution was available, compiled ODE models are used.
Every fit is only performed once, so the accuracy of the benchmarks is limited.
Parent only:
FOCUS_C <- FOCUS_2006_C
FOCUS_D <- subset(FOCUS_2006_D, value != 0)
parent_datasets <- list(FOCUS_C, FOCUS_D)
t1 <- system.time(mmkin_bench(c("SFO", "FOMC", "DFOP", "HS"), parent_datasets))[["elapsed"]]
t2 <- system.time(mmkin_bench(c("SFO", "FOMC", "DFOP", "HS"), parent_datasets,
error_model = "tc"))[["elapsed"]]
One metabolite:
SFO_SFO <- mkinmod(
parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"))
FOMC_SFO <- mkinmod(
parent = mkinsub("FOMC", "m1"),
m1 = mkinsub("SFO"))
DFOP_SFO <- mkinmod(
parent = mkinsub("FOMC", "m1"),
m1 = mkinsub("SFO"))
t3 <- system.time(mmkin_bench(list(SFO_SFO, FOMC_SFO, DFOP_SFO), list(FOCUS_D)))[["elapsed"]]
t4 <- system.time(mmkin_bench(list(SFO_SFO, FOMC_SFO, DFOP_SFO), list(FOCUS_D),
error_model = "tc"))[["elapsed"]]
t5 <- system.time(mmkin_bench(list(SFO_SFO, FOMC_SFO, DFOP_SFO), list(FOCUS_D),
error_model = "obs"))[["elapsed"]]
Two metabolites, synthetic data:
m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"),
M1 = mkinsub("SFO", "M2"),
M2 = mkinsub("SFO"),
use_of_ff = "max", quiet = TRUE)
m_synth_DFOP_par <- mkinmod(parent = mkinsub("DFOP", c("M1", "M2")),
M1 = mkinsub("SFO"),
M2 = mkinsub("SFO"),
use_of_ff = "max", quiet = TRUE)
SFO_lin_a <- synthetic_data_for_UBA_2014[[1]]$data
DFOP_par_c <- synthetic_data_for_UBA_2014[[12]]$data
t6 <- system.time(mmkin_bench(list(m_synth_SFO_lin), list(SFO_lin_a)))[["elapsed"]]
t7 <- system.time(mmkin_bench(list(m_synth_DFOP_par), list(DFOP_par_c)))[["elapsed"]]
t8 <- system.time(mmkin_bench(list(m_synth_SFO_lin), list(SFO_lin_a),
error_model = "tc"))[["elapsed"]]
t9 <- system.time(mmkin_bench(list(m_synth_DFOP_par), list(DFOP_par_c),
error_model = "tc"))[["elapsed"]]
t10 <- system.time(mmkin_bench(list(m_synth_SFO_lin), list(SFO_lin_a),
error_model = "obs"))[["elapsed"]]
t11 <- system.time(mmkin_bench(list(m_synth_DFOP_par), list(DFOP_par_c),
error_model = "obs"))[["elapsed"]]
mkin_benchmarks[system_string, paste0("t", 1:11)] <-
c(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11)
save(mkin_benchmarks, file = benchmark_path)
# Hide rownames from kable for results section
rownames(mkin_benchmarks) <- NULL
Benchmarks for all available error models are shown. They are intended for improving mkin, not for comparing CPUs or operating systems. All trademarks belong to their respective owners.
Constant variance (t1) and two-component error model (t2) for four models fitted to two datasets, i.e. eight fits for each test.
OS | CPU | R | mkin | t1 | t2 |
---|---|---|---|---|---|
Linux | Ryzen 7 1700 | NA | 0.9.48.1 | 3.610 | 11.019 |
Linux | Ryzen 7 1700 | NA | 0.9.49.1 | 8.184 | 22.889 |
Linux | Ryzen 7 1700 | NA | 0.9.49.2 | 7.064 | 12.558 |
Linux | Ryzen 7 1700 | NA | 0.9.49.3 | 7.296 | 21.239 |
Linux | Ryzen 7 1700 | NA | 0.9.49.4 | 5.936 | 20.545 |
Linux | Ryzen 7 1700 | NA | 0.9.50.2 | 1.714 | 3.971 |
Linux | Ryzen 7 1700 | NA | 0.9.50.3 | 1.752 | 4.156 |
Linux | Ryzen 7 1700 | NA | 0.9.50.4 | 1.786 | 3.729 |
Linux | Ryzen 7 1700 | NA | 1.0.3 | 1.881 | 3.504 |
Linux | Ryzen 7 1700 | NA | 1.0.4 | 1.867 | 3.450 |
Linux | Ryzen 7 1700 | 4.1.3 | 1.1.0 | 1.791 | 3.289 |
Linux | Ryzen 7 1700 | 4.2.1 | 1.1.0 | 1.860 | 3.526 |
Linux | i7-4710MQ | 4.2.1 | 1.1.0 | 1.959 | 4.116 |
Linux | i7-4710MQ | 4.1.3 | 1.1.0 | 1.877 | 3.906 |
Constant variance (t3), two-component error model (t4), and variance by variable (t5) for three models fitted to one dataset, i.e. three fits for each test.
OS | CPU | R | mkin | t3 | t4 | t5 |
---|---|---|---|---|---|---|
Linux | Ryzen 7 1700 | NA | 0.9.48.1 | 3.764 | 14.347 | 9.495 |
Linux | Ryzen 7 1700 | NA | 0.9.49.1 | 4.649 | 13.789 | 6.395 |
Linux | Ryzen 7 1700 | NA | 0.9.49.2 | 4.786 | 8.461 | 5.675 |
Linux | Ryzen 7 1700 | NA | 0.9.49.3 | 4.510 | 13.805 | 7.386 |
Linux | Ryzen 7 1700 | NA | 0.9.49.4 | 4.446 | 15.335 | 6.002 |
Linux | Ryzen 7 1700 | NA | 0.9.50.2 | 1.402 | 6.174 | 2.764 |
Linux | Ryzen 7 1700 | NA | 0.9.50.3 | 1.430 | 6.615 | 2.878 |
Linux | Ryzen 7 1700 | NA | 0.9.50.4 | 1.397 | 7.251 | 2.810 |
Linux | Ryzen 7 1700 | NA | 1.0.3 | 1.430 | 6.344 | 2.798 |
Linux | Ryzen 7 1700 | NA | 1.0.4 | 1.415 | 6.364 | 2.820 |
Linux | Ryzen 7 1700 | 4.1.3 | 1.1.0 | 1.310 | 6.279 | 2.681 |
Linux | Ryzen 7 1700 | 4.2.1 | 1.1.0 | 4.237 | 23.882 | 9.508 |
Linux | i7-4710MQ | 4.2.1 | 1.1.0 | 3.334 | 19.521 | 7.565 |
Linux | i7-4710MQ | 4.1.3 | 1.1.0 | 1.578 | 8.058 | 3.339 |
Constant variance (t6 and t7), two-component error model (t8 and t9), and variance by variable (t10 and t11) for one model fitted to one dataset, i.e. one fit for each test.
OS | CPU | R | mkin | t6 | t7 | t8 | t9 | t10 | t11 |
---|---|---|---|---|---|---|---|---|---|
Linux | Ryzen 7 1700 | NA | 0.9.48.1 | 2.623 | 4.587 | 7.525 | 16.621 | 8.576 | 31.267 |
Linux | Ryzen 7 1700 | NA | 0.9.49.1 | 2.542 | 4.128 | 4.632 | 8.171 | 3.676 | 5.636 |
Linux | Ryzen 7 1700 | NA | 0.9.49.2 | 2.723 | 4.478 | 4.862 | 7.618 | 3.579 | 5.574 |
Linux | Ryzen 7 1700 | NA | 0.9.49.3 | 2.643 | 4.374 | 7.020 | 11.124 | 5.388 | 7.365 |
Linux | Ryzen 7 1700 | NA | 0.9.49.4 | 2.635 | 4.259 | 4.737 | 7.763 | 3.427 | 5.626 |
Linux | Ryzen 7 1700 | NA | 0.9.50.2 | 0.777 | 1.236 | 1.332 | 2.872 | 2.069 | 2.987 |
Linux | Ryzen 7 1700 | NA | 0.9.50.3 | 0.858 | 1.264 | 1.333 | 2.984 | 2.113 | 3.073 |
Linux | Ryzen 7 1700 | NA | 0.9.50.4 | 0.783 | 1.282 | 1.486 | 3.815 | 1.958 | 3.105 |
Linux | Ryzen 7 1700 | NA | 1.0.3 | 0.763 | 1.244 | 1.457 | 3.054 | 1.923 | 2.839 |
Linux | Ryzen 7 1700 | NA | 1.0.4 | 0.785 | 1.252 | 1.466 | 3.091 | 1.936 | 2.826 |
Linux | Ryzen 7 1700 | 4.1.3 | 1.1.0 | 0.744 | 1.227 | 1.288 | 3.553 | 1.895 | 2.738 |
Linux | Ryzen 7 1700 | 4.2.1 | 1.1.0 | 3.350 | 4.735 | 5.507 | 11.860 | 7.179 | 10.934 |
Linux | i7-4710MQ | 4.2.1 | 1.1.0 | 2.522 | 3.792 | 4.143 | 11.268 | 5.935 | 8.728 |
Linux | i7-4710MQ | 4.1.3 | 1.1.0 | 0.907 | 1.535 | 1.589 | 4.544 | 2.302 | 3.463 |