1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
#' @importFrom nlme intervals
#' @export
nlme::intervals
#' Confidence intervals for parameters in saem.mmkin objects
#'
#' @param object The fitted saem.mmkin object
#' @param level The confidence level. Must be the default of 0.95 as this is what
#' is available in the saemix object
#' @param backtransform In case the model was fitted with mkin transformations,
#' should we backtransform the parameters where a one to one correlation
#' between transformed and backtransformed parameters exists?
#' @param \dots For compatibility with the generic method
#' @return An object with 'intervals.saem.mmkin' and 'intervals.lme' in the
#' class attribute
#' @export
intervals.saem.mmkin <- function(object, level = 0.95, backtransform = TRUE, ...)
{
if (!identical(level, 0.95)) {
stop("Confidence intervals are only available for a level of 95%")
}
mod_vars <- names(object$mkinmod$diffs)
pnames <- names(object$mean_dp_start)
# Confidence intervals are available in the SaemixObject, so
# we just need to extract them and put them into a list modelled
# after the result of nlme::intervals.lme
conf.int <- object$so@results@conf.int
rownames(conf.int) <- conf.int$name
colnames(conf.int)[2] <- "est."
confint_trans <- as.matrix(conf.int[pnames, c("lower", "est.", "upper")])
# Fixed effects
# In case objects were produced by earlier versions of saem
if (is.null(object$transformations)) object$transformations <- "mkin"
if (object$transformations == "mkin" & backtransform) {
bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod,
object$transform_rates, object$transform_fractions)
bpnames <- names(bp)
# Transform boundaries of CI for one parameter at a time,
# with the exception of sets of formation fractions (single fractions are OK).
f_names_skip <- character(0)
for (box in mod_vars) { # Figure out sets of fractions to skip
f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE)
n_paths <- length(f_names)
if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names)
}
confint_back <- matrix(NA, nrow = length(bp), ncol = 3,
dimnames = list(bpnames, colnames(confint_trans)))
confint_back[, "est."] <- bp
for (pname in pnames) {
if (!pname %in% f_names_skip) {
par.lower <- confint_trans[pname, "lower"]
par.upper <- confint_trans[pname, "upper"]
names(par.lower) <- names(par.upper) <- pname
bpl <- backtransform_odeparms(par.lower, object$mkinmod,
object$transform_rates,
object$transform_fractions)
bpu <- backtransform_odeparms(par.upper, object$mkinmod,
object$transform_rates,
object$transform_fractions)
confint_back[names(bpl), "lower"] <- bpl
confint_back[names(bpu), "upper"] <- bpu
}
}
confint_ret <- confint_back
} else {
confint_ret <- confint_trans
}
attr(confint_ret, "label") <- "Fixed effects:"
# Random effects
ranef_ret <- as.matrix(conf.int[paste0("SD.", pnames), c("lower", "est.", "upper")])
rownames(ranef_ret) <- paste0(gsub("SD\\.", "sd(", rownames(ranef_ret)), ")")
attr(ranef_ret, "label") <- "Random effects:"
# Error model
enames <- if (object$err_mod == "const") "a.1" else c("a.1", "b.1")
err_ret <- as.matrix(conf.int[enames, c("lower", "est.", "upper")])
res <- list(
fixed = confint_ret,
random = ranef_ret,
errmod = err_ret
)
class(res) <- c("intervals.saemix.mmkin", "intervals.lme")
attr(res, "level") <- level
return(res)
}
#' Confidence intervals for parameters in nlmixr.mmkin objects
#'
#' @param object The fitted saem.mmkin object
#' @param level The confidence level.
#' @param backtransform Should we backtransform the parameters where a one to
#' one correlation between transformed and backtransformed parameters exists?
#' @param \dots For compatibility with the generic method
#' @importFrom nlme intervals
#' @return An object with 'intervals.saem.mmkin' and 'intervals.lme' in the
#' class attribute
#' @export
intervals.nlmixr.mmkin <- function(object, level = 0.95, backtransform = TRUE, ...)
{
# Fixed effects
mod_vars <- names(object$mkinmod$diffs)
conf.int <- confint(object$nm)
dpnames <- setdiff(rownames(conf.int), names(object$mean_ep_start))
ndp <- length(dpnames)
confint_trans <- as.matrix(conf.int[dpnames, c(3, 1, 4)])
colnames(confint_trans) <- c("lower", "est.", "upper")
if (backtransform) {
bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod,
object$transform_rates, object$transform_fractions)
bpnames <- names(bp)
# Transform boundaries of CI for one parameter at a time,
# with the exception of sets of formation fractions (single fractions are OK).
f_names_skip <- character(0)
for (box in mod_vars) { # Figure out sets of fractions to skip
f_names <- grep(paste("^f", box, sep = "_"), dpnames, value = TRUE)
n_paths <- length(f_names)
if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names)
}
confint_back <- matrix(NA, nrow = length(bp), ncol = 3,
dimnames = list(bpnames, colnames(confint_trans)))
confint_back[, "est."] <- bp
for (pname in dpnames) {
if (!pname %in% f_names_skip) {
par.lower <- confint_trans[pname, "lower"]
par.upper <- confint_trans[pname, "upper"]
names(par.lower) <- names(par.upper) <- pname
bpl <- backtransform_odeparms(par.lower, object$mkinmod,
object$transform_rates,
object$transform_fractions)
bpu <- backtransform_odeparms(par.upper, object$mkinmod,
object$transform_rates,
object$transform_fractions)
confint_back[names(bpl), "lower"] <- bpl
confint_back[names(bpu), "upper"] <- bpu
}
}
confint_ret <- confint_back
} else {
confint_ret <- confint_trans
}
attr(confint_ret, "label") <- "Fixed effects:"
# Random effects
ranef_ret <- as.matrix(data.frame(lower = NA,
"est." = sqrt(diag(object$nm$omega)), upper = NA))
rownames(ranef_ret) <- paste0(gsub("eta\\.", "sd(", rownames(ranef_ret)), ")")
attr(ranef_ret, "label") <- "Random effects:"
# Error model
enames <- names(object$nm$sigma)
err_ret <- as.matrix(conf.int[enames, c(3, 1, 4)])
colnames(err_ret) <- c("lower", "est.", "upper")
res <- list(
fixed = confint_ret,
random = ranef_ret,
errmod = err_ret
)
class(res) <- c("intervals.nlmixr.mmkin", "intervals.lme")
attr(res, "level") <- level
return(res)
}
|