1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
#' Estimation of parameter distributions from mmkin row objects
#'
#' This function sets up and attempts to fit a mixed effects model to
#' an mmkin row object which is essentially a list of mkinfit objects
#' that have been obtained by fitting the same model to a list of
#' datasets.
#'
#' @param object An mmkin row object containing several fits of the same model to different datasets
#' @param random_spec Either "auto" or a specification of random effects for \code{\link{nlme}}
#' given as a character vector
#' @param ... Additional arguments passed to \code{\link{nlme}}
#' @import nlme
#' @importFrom purrr map_dfr
#' @return An nlme object
#' @examples
#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
#' m_SFO <- mkinmod(parent = mkinsub("SFO"))
#' d_SFO_1 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.1),
#' c(parent = 98), sampling_times)
#' d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time")
#' d_SFO_2 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.05),
#' c(parent = 102), sampling_times)
#' d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time")
#' d_SFO_3 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.02),
#' c(parent = 103), sampling_times)
#' d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time")
#'
#' d1 <- add_err(d_SFO_1, function(value) 3, n = 1)
#' d2 <- add_err(d_SFO_2, function(value) 2, n = 1)
#' d3 <- add_err(d_SFO_3, function(value) 4, n = 1)
#' ds <- c(d1 = d1, d2 = d2, d3 = d3)
#'
#' f <- mmkin("SFO", ds)
#' x <- memkin(f)
#' summary(x)
#'
#' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) x$data[c("name", "time", "value")])
#' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"), use_of_ff = "min")
#' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"), use_of_ff = "max")
#' m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
#' A1 = mkinsub("SFO"))
#' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"))
#' m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"),
#' A1 = mkinsub("SFO"))
#'
#' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
#' "SFO-SFO-ff" = m_sfo_sfo_ff,
#' "FOMC-SFO" = m_fomc_sfo,
#' "DFOP-SFO" = m_dfop_sfo,
#' "SFORB-SFO" = m_sforb_sfo),
#' ds_2)
#'
#' f_nlme_sfo_sfo <- memkin(f_2[1, ])
#' f_nlme_sfo_sfo_2 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1)") # explicit
#' f_nlme_sfo_sfo_3 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 ~ 1)") # reduced
#' f_nlme_sfo_sfo_4 <- memkin(f_2[1, ], "pdDiag(parent_0 + log_k_parent_sink ~ 1)") # further reduced
#' \dontrun{
#' f_nlme_sfo_sfo_ff <- memkin(f_2[2, ]) # does not converge with maxIter = 50
#' }
#' f_nlme_fomc_sfo <- memkin(f_2[3, ])
#' \dontrun{
#' f_nlme_dfop_sfo <- memkin(f_2[4, ]) # apparently underdetermined}
#' f_nlme_sforb_sfo <- memkin(f_2[5, ]) # also does not converge
#' }
#' anova(f_nlme_sfo_sfo, f_nlme_fomc_sfo)
#' # The FOMC variant has a lower AIC and has significantly higher likelihood
#' @export
memkin <- function(object, random_spec = "auto", ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
p_mat_start_trans <- sapply(object, parms, transformed = TRUE)
colnames(p_mat_start_trans) <- ds_names
p_names_mean_function <- setdiff(rownames(p_mat_start_trans), names(object[[1]]$errparms))
p_start_mean_function <- apply(p_mat_start_trans[p_names_mean_function, ], 1, mean)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
ds_nlme$variable <- as.character(ds_nlme$variable)
ds_nlme_grouped <- groupedData(observed ~ time | ds, ds_nlme)
mkin_model <- object[[1]]$mkinmod
# Inspired by https://stackoverflow.com/a/12983961/3805440
# and https://stackoverflow.com/a/26280789/3805440
model_function_alist <- replicate(length(p_names_mean_function) + 2, substitute())
names(model_function_alist) <- c("name", "time", p_names_mean_function)
model_function_body <- quote({
arg_frame <- as.data.frame(as.list((environment())), stringsAsFactors = FALSE)
res_frame <- arg_frame[1:2]
parm_frame <- arg_frame[-(1:2)]
parms_unique <- unique(parm_frame)
n_unique <- nrow(parms_unique)
times_ds <- list()
names_ds <- list()
for (i in 1:n_unique) {
times_ds[[i]] <-
arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "time"]
names_ds[[i]] <-
arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "name"]
}
res_list <- lapply(1:n_unique, function(x) {
transparms_optim <- unlist(parms_unique[x, , drop = TRUE])
parms_fixed <- object[[1]]$bparms.fixed
odeini_optim_parm_names <- grep('_0$', names(transparms_optim), value = TRUE)
odeini_optim <- transparms_optim[odeini_optim_parm_names]
names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names)
odeini_fixed_parm_names <- grep('_0$', names(parms_fixed), value = TRUE)
odeini_fixed <- parms_fixed[odeini_fixed_parm_names]
names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names)
odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions)
odeparms_fixed_names <- setdiff(names(parms_fixed), odeini_fixed_parm_names)
odeparms_fixed <- parms_fixed[odeparms_fixed_names]
odeparms <- c(odeparms_optim, odeparms_fixed)
out_wide <- mkinpredict(mkin_model,
odeparms = odeparms, odeini = odeini,
solution_type = object[[1]]$solution_type,
outtimes = sort(unique(times_ds[[x]])))
out_array <- out_wide[, -1, drop = FALSE]
rownames(out_array) <- as.character(unique(times_ds[[x]]))
out_times <- as.character(times_ds[[x]])
out_names <- as.character(names_ds[[x]])
out_values <- mapply(function(times, names) out_array[times, names],
out_times, out_names)
return(as.numeric(out_values))
})
res <- unlist(res_list)
return(res)
})
model_function <- as.function(c(model_function_alist, model_function_body))
# For some reason, using envir = parent.frame() here is not enough,
# we need to use assign
assign("model_function", model_function, envir = parent.frame())
random_spec <- if (random_spec[1] == "auto") {
paste0("pdDiag(", paste(p_names_mean_function, collapse = " + "), " ~ 1),\n")
} else {
paste0(random_spec, ",\n")
}
nlme_call_text <- paste0(
"nlme(observed ~ model_function(variable, time, ",
paste(p_names_mean_function, collapse = ", "), "),\n",
" data = ds_nlme_grouped,\n",
" fixed = ", paste(p_names_mean_function, collapse = " + "), " ~ 1,\n",
" random = ", random_spec, "\n",
" start = p_start_mean_function)\n")
f_nlme <- eval(parse(text = nlme_call_text))
return(f_nlme)
}
|