1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
# Copyright (C) 2010-2014 Johannes Ranke
# Contact: jranke@uni-bremen.de
# This file is part of the R package mkin
# mkin is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>
if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "value_mean"))
mkinerrmin <- function(fit, alpha = 0.05)
{
parms.optim <- fit$par
kinerrmin <- function(errdata, n.parms) {
means.mean <- mean(errdata$value_mean, na.rm = TRUE)
df = length(errdata$value_mean) - n.parms
err.min <- sqrt((1 / qchisq(1 - alpha, df)) *
sum((errdata$value_mean - errdata$value_pred)^2)/(means.mean^2))
return(list(err.min = err.min, n.optim = n.parms, df = df))
}
means <- aggregate(value ~ time + name, data = fit$observed, mean, na.rm=TRUE)
errdata <- merge(means, fit$predicted, by = c("time", "name"),
suffixes = c("_mean", "_pred"))
errdata <- errdata[order(errdata$time, errdata$name), ]
# Any value that is set to exactly zero is not really an observed value
# Remove those at time 0 - those are caused by the FOCUS recommendation
# to set metabolites occurring at time 0 to 0
errdata <- subset(errdata, !(time == 0 & value_mean == 0))
n.optim.overall <- length(parms.optim)
errmin.overall <- kinerrmin(errdata, n.optim.overall)
errmin <- data.frame(err.min = errmin.overall$err.min,
n.optim = errmin.overall$n.optim, df = errmin.overall$df)
rownames(errmin) <- "All data"
for (obs_var in fit$obs_vars)
{
errdata.var <- subset(errdata, name == obs_var)
# Check if initial value is optimised
n.initials.optim <- length(grep(paste(obs_var, ".*", "_0", sep=""), names(parms.optim)))
# Rate constants and IORE exponents are attributed to the source variable
n.k.optim <- length(grep(paste("^k", obs_var, sep="_"), names(parms.optim)))
n.k.iore.optim <- length(grep(paste("^k.iore", obs_var, sep="_"), names(parms.optim)))
n.N.optim <- length(grep(paste("^N", obs_var, sep="_"), names(parms.optim)))
# Formation fractions are attributed to the target variable
n.ff.optim <- length(grep(paste("^f", ".*", obs_var, "$", sep=""), names(parms.optim)))
n.optim <- sum(n.initials.optim, n.k.optim, n.k.iore.optim, n.N.optim, n.ff.optim)
# FOMC, DFOP and HS parameters are only counted if we are looking at the
# first variable in the model which is always the source variable
if (obs_var == fit$obs_vars[[1]]) {
if ("alpha" %in% names(parms.optim)) n.optim <- n.optim + 1
if ("beta" %in% names(parms.optim)) n.optim <- n.optim + 1
if ("k1" %in% names(parms.optim)) n.optim <- n.optim + 1
if ("k2" %in% names(parms.optim)) n.optim <- n.optim + 1
if ("g" %in% names(parms.optim)) n.optim <- n.optim + 1
if ("tb" %in% names(parms.optim)) n.optim <- n.optim + 1
}
# Calculate and add a line to the dataframe holding the results
errmin.tmp <- kinerrmin(errdata.var, n.optim)
errmin[obs_var, c("err.min", "n.optim", "df")] <- errmin.tmp
}
return(errmin)
}
|