1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
|
# Copyright (C) 2010-2014 Johannes Ranke
# Portions of this code are copyright (C) 2013 Eurofins Regulatory AG
# Contact: jranke@uni-bremen.de
# The summary function is an adapted and extended version of summary.modFit
# from the FME package, v 1.1 by Soetart and Petzoldt, which was in turn
# inspired by summary.nls.lm
# This file is part of the R package mkin
# mkin is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>
if(getRversion() >= '2.15.1') utils::globalVariables(c("name", "value"))
mkinfit <- function(mkinmod, observed,
parms.ini = "auto",
state.ini = "auto",
fixed_parms = NULL,
fixed_initials = names(mkinmod$diffs)[-1],
solution_type = "auto",
method.ode = "lsoda",
use_compiled = "auto",
method.modFit = c("Port", "Marq", "SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B"),
maxit.modFit = "auto",
control.modFit = list(),
transform_rates = TRUE,
transform_fractions = TRUE,
plot = FALSE, quiet = FALSE,
err = NULL, weight = "none", scaleVar = FALSE,
atol = 1e-8, rtol = 1e-10, n.outtimes = 100,
reweight.method = NULL,
reweight.tol = 1e-8, reweight.max.iter = 10,
trace_parms = FALSE,
...)
{
# Check mkinmod and generate a model for the variable whith the highest value
# if a suitable string is given
parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE")
if (class(mkinmod) != "mkinmod") {
presumed_parent_name = observed[which.max(observed$value), "name"]
if (mkinmod[[1]] %in% parent_models_available) {
speclist <- list(list(type = mkinmod, sink = TRUE))
names(speclist) <- presumed_parent_name
mkinmod <- mkinmod(speclist = speclist)
} else {
stop("Argument mkinmod must be of class mkinmod or a string containing one of\n ",
paste(parent_models_available, collapse = ", "))
}
}
# Check optimisation method and set maximum number of iterations if specified
method.modFit = match.arg(method.modFit)
if (maxit.modFit != "auto") {
if (method.modFit == "Marq") control.modFit$maxiter = maxit.modFit
if (method.modFit == "Port") {
control.modFit$iter.max = maxit.modFit
control.modFit$eval.max = maxit.modFit
}
if (method.modFit %in% c("SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B")) {
control.modFit$maxit = maxit.modFit
}
}
# Get the names of the state variables in the model
mod_vars <- names(mkinmod$diffs)
# Get the names of observed variables
obs_vars <- names(mkinmod$spec)
# Subset observed data with names of observed data in the model
observed <- subset(observed, name %in% obs_vars)
# Define starting values for parameters where not specified by the user
if (parms.ini[[1]] == "auto") parms.ini = vector()
# Prevent inital parameter specifications that are not in the model
wrongpar.names <- setdiff(names(parms.ini), mkinmod$parms)
if (length(wrongpar.names) > 0) {
stop("Initial parameter(s) ", paste(wrongpar.names, collapse = ", "),
" not used in the model")
}
# Warn that the sum of formation fractions may exceed one they are not
# fitted in the transformed way
if (mkinmod$use_of_ff == "max" & transform_fractions == FALSE) {
warning("The sum of formation fractions may exceed one if you do not use ",
"transform_fractions = TRUE." )
for (box in mod_vars) {
# Stop if formation fractions are not transformed and we have no sink
if (mkinmod$spec[[box]]$sink == FALSE) {
stop("If formation fractions are not transformed during the fitting, ",
"it is not supported to turn off pathways to sink.\n ",
"Consider turning on the transformation of formation fractions or ",
"setting up a model with use_of_ff = 'min'.\n")
}
}
}
# Do not allow fixing formation fractions if we are using the ilr transformation,
# this is not supported
if (transform_fractions == TRUE && length(fixed_parms) > 0) {
if (grepl("^f_", fixed_parms)) {
stop("Fixing formation fractions is not supported when using the ilr ",
"transformation.")
}
}
# Set initial parameter values, including a small increment (salt)
# to avoid linear dependencies (singular matrix) in Eigenvalue based solutions
k_salt = 0
defaultpar.names <- setdiff(mkinmod$parms, names(parms.ini))
for (parmname in defaultpar.names) {
# Default values for rate constants, depending on the parameterisation
if (grepl("^k", parmname)) {
parms.ini[parmname] = 0.1 + k_salt
k_salt = k_salt + 1e-4
}
# Default values for rate constants for reversible binding
if (grepl("free_bound$", parmname)) parms.ini[parmname] = 0.1
if (grepl("bound_free$", parmname)) parms.ini[parmname] = 0.02
# Default values for IORE exponents
if (grepl("^N", parmname)) parms.ini[parmname] = 1
# Default values for the FOMC, DFOP and HS models
if (parmname == "alpha") parms.ini[parmname] = 1
if (parmname == "beta") parms.ini[parmname] = 10
if (parmname == "k1") parms.ini[parmname] = 0.1
if (parmname == "k2") parms.ini[parmname] = 0.01
if (parmname == "tb") parms.ini[parmname] = 5
if (parmname == "g") parms.ini[parmname] = 0.5
}
# Default values for formation fractions in case they are present
for (box in mod_vars) {
f_names <- mkinmod$parms[grep(paste0("^f_", box), mkinmod$parms)]
if (length(f_names) > 0) {
# We need to differentiate between default and specified fractions
# and set the unspecified to 1 - sum(specified)/n_unspecified
f_default_names <- intersect(f_names, defaultpar.names)
f_specified_names <- setdiff(f_names, defaultpar.names)
sum_f_specified = sum(parms.ini[f_specified_names])
if (sum_f_specified > 1) {
stop("Starting values for the formation fractions originating from ",
box, " sum up to more than 1.")
}
if (mkinmod$spec[[box]]$sink) n_unspecified = length(f_default_names) + 1
else {
n_unspecified = length(f_default_names)
}
parms.ini[f_default_names] <- (1 - sum_f_specified) / n_unspecified
}
}
# Set default for state.ini if appropriate
parent_name = names(mkinmod$spec)[[1]]
if (state.ini[1] == "auto") {
parent_time_0 = subset(observed, time == 0 & name == parent_name)$value
parent_time_0_mean = mean(parent_time_0, na.rm = TRUE)
if (is.na(parent_time_0_mean)) {
state.ini = c(100, rep(0, length(mkinmod$diffs) - 1))
} else {
state.ini = c(parent_time_0_mean, rep(0, length(mkinmod$diffs) - 1))
}
}
# Name the inital state variable values if they are not named yet
if(is.null(names(state.ini))) names(state.ini) <- mod_vars
# Transform initial parameter values for fitting
transparms.ini <- transform_odeparms(parms.ini, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
# Parameters to be optimised:
# Kinetic parameters in parms.ini whose names are not in fixed_parms
parms.fixed <- parms.ini[fixed_parms]
parms.optim <- parms.ini[setdiff(names(parms.ini), fixed_parms)]
transparms.fixed <- transform_odeparms(parms.fixed, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
transparms.optim <- transform_odeparms(parms.optim, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
# Inital state variables in state.ini whose names are not in fixed_initials
state.ini.fixed <- state.ini[fixed_initials]
state.ini.optim <- state.ini[setdiff(names(state.ini), fixed_initials)]
# Preserve names of state variables before renaming initial state variable
# parameters
state.ini.optim.boxnames <- names(state.ini.optim)
state.ini.fixed.boxnames <- names(state.ini.fixed)
if(length(state.ini.optim) > 0) {
names(state.ini.optim) <- paste(names(state.ini.optim), "0", sep="_")
}
if(length(state.ini.fixed) > 0) {
names(state.ini.fixed) <- paste(names(state.ini.fixed), "0", sep="_")
}
# Decide if the solution of the model can be based on a simple analytical
# formula, the spectral decomposition of the matrix (fundamental system)
# or a numeric ode solver from the deSolve package
if (!solution_type %in% c("auto", "analytical", "eigen", "deSolve"))
stop("solution_type must be auto, analytical, eigen or de Solve")
if (solution_type == "analytical" && length(mkinmod$spec) > 1)
stop("Analytical solution not implemented for models with metabolites.")
if (solution_type == "eigen" && !is.matrix(mkinmod$coefmat))
stop("Eigenvalue based solution not possible, coefficient matrix not present.")
if (solution_type == "auto") {
if (length(mkinmod$spec) == 1) {
solution_type = "analytical"
} else {
if (is.matrix(mkinmod$coefmat)) {
solution_type = "eigen"
if (max(observed$value, na.rm = TRUE) < 0.1) {
stop("The combination of small observed values (all < 0.1) and solution_type = eigen is error-prone")
}
} else {
solution_type = "deSolve"
}
}
}
cost.old <- 1e100 # The first model cost should be smaller than this value
calls <- 0 # Counter for number of model solutions
out_predicted <- NA
# Define the model cost function
cost <- function(P)
{
assign("calls", calls+1, inherits=TRUE) # Increase the model solution counter
# Trace parameter values if requested
if(trace_parms) cat(P, "\n")
# Time points at which observed data are available
# Make sure we include time 0, so initial values for state variables are for time 0
outtimes = sort(unique(c(observed$time, seq(min(observed$time),
max(observed$time),
length.out = n.outtimes))))
if(length(state.ini.optim) > 0) {
odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames)
} else {
odeini <- state.ini.fixed
names(odeini) <- state.ini.fixed.boxnames
}
odeparms <- c(P[(length(state.ini.optim) + 1):length(P)], transparms.fixed)
parms <- backtransform_odeparms(odeparms, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
# Solve the system with current transformed parameter values
out <- mkinpredict(mkinmod, parms,
odeini, outtimes,
solution_type = solution_type,
use_compiled = use_compiled,
method.ode = method.ode,
atol = atol, rtol = rtol, ...)
assign("out_predicted", out, inherits=TRUE)
mC <- modCost(out, observed, y = "value",
err = err, weight = weight, scaleVar = scaleVar)
# Report and/or plot if the model is improved
if (mC$model < cost.old) {
if(!quiet) cat("Model cost at call ", calls, ": ", mC$model, "\n")
# Plot the data and current model output if requested
if(plot) {
outtimes_plot = seq(min(observed$time), max(observed$time), length.out=100)
out_plot <- mkinpredict(mkinmod, parms,
odeini, outtimes_plot,
solution_type = solution_type,
use_compiled = use_compiled,
method.ode = method.ode,
atol = atol, rtol = rtol, ...)
plot(0, type="n",
xlim = range(observed$time), ylim = c(0, max(observed$value, na.rm=TRUE)),
xlab = "Time", ylab = "Observed")
col_obs <- pch_obs <- 1:length(obs_vars)
lty_obs <- rep(1, length(obs_vars))
names(col_obs) <- names(pch_obs) <- names(lty_obs) <- obs_vars
for (obs_var in obs_vars) {
points(subset(observed, name == obs_var, c(time, value)),
pch = pch_obs[obs_var], col = col_obs[obs_var])
}
matlines(out_plot$time, out_plot[-1], col = col_obs, lty = lty_obs)
legend("topright", inset=c(0.05, 0.05), legend=obs_vars,
col=col_obs, pch=pch_obs, lty=1:length(pch_obs))
}
assign("cost.old", mC$model, inherits=TRUE)
}
return(mC)
}
lower <- rep(-Inf, length(c(state.ini.optim, transparms.optim)))
upper <- rep(Inf, length(c(state.ini.optim, transparms.optim)))
names(lower) <- names(upper) <- c(names(state.ini.optim), names(transparms.optim))
if (!transform_rates) {
index_k <- grep("^k_", names(lower))
lower[index_k] <- 0
index_k.iore <- grep("^k.iore_", names(lower))
lower[index_k.iore] <- 0
other_rate_parms <- intersect(c("alpha", "beta", "k1", "k2", "tb"), names(lower))
lower[other_rate_parms] <- 0
}
if (!transform_fractions) {
index_f <- grep("^f_", names(upper))
lower[index_f] <- 0
upper[index_f] <- 1
other_fraction_parms <- intersect(c("g"), names(upper))
lower[other_fraction_parms] <- 0
upper[other_fraction_parms] <- 1
}
# Do the fit and take the time
fit_time <- system.time({
fit <- modFit(cost, c(state.ini.optim, transparms.optim),
method = method.modFit, control = control.modFit,
lower = lower, upper = upper, ...)
# Reiterate the fit until convergence of the variance components (IRLS)
# if requested by the user
weight.ini = weight
if (!is.null(err)) weight.ini = "manual"
if (!is.null(reweight.method)) {
if (reweight.method != "obs") stop("Only reweighting method 'obs' is implemented")
if(!quiet) {
cat("IRLS based on variance estimates for each observed variable\n")
}
if (!quiet) {
cat("Initial variance estimates are:\n")
print(signif(fit$var_ms_unweighted, 8))
}
reweight.diff = 1
n.iter <- 0
if (!is.null(err)) observed$err.ini <- observed[[err]]
err = "err.irls"
while (reweight.diff > reweight.tol & n.iter < reweight.max.iter) {
n.iter <- n.iter + 1
sigma.old <- sqrt(fit$var_ms_unweighted)
observed[err] <- sqrt(fit$var_ms_unweighted)[as.character(observed$name)]
fit <- modFit(cost, fit$par, method = method.modFit,
control = control.modFit, lower = lower, upper = upper, ...)
reweight.diff = sum((sqrt(fit$var_ms_unweighted) - sigma.old)^2)
if (!quiet) {
cat("Iteration", n.iter, "yields variance estimates:\n")
print(signif(fit$var_ms_unweighted, 8))
cat("Sum of squared differences to last variance estimates:",
signif(reweight.diff, 2), "\n")
}
}
}
})
# Check for convergence
if (method.modFit == "Marq") {
if (!fit$info %in% c(1, 2, 3)) {
fit$warning = paste0("Optimisation by method ", method.modFit,
" did not converge.\n",
"The message returned by nls.lm is:\n",
fit$message)
warning(fit$warning)
}
else {
if(!quiet) cat("Optimisation by method", method.modFit, "successfully terminated.\n")
}
}
if (method.modFit %in% c("Port", "SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B")) {
if (fit$convergence != 0) {
fit$warning = paste0("Optimisation by method ", method.modFit,
" did not converge.\n",
"Convergence code is ", fit$convergence,
ifelse(is.null(fit$message), "",
paste0("\nMessage is ", fit$message)))
warning(fit$warning)
} else {
if(!quiet) cat("Optimisation by method", method.modFit, "successfully terminated.\n")
}
}
# Return number of iterations for SANN method
if (method.modFit == "SANN") {
fit$iter = maxit.modFit
if(!quiet) cat("Termination of the SANN algorithm does not imply convergence.\n")
}
# We need to return some more data for summary and plotting
fit$solution_type <- solution_type
fit$transform_rates <- transform_rates
fit$transform_fractions <- transform_fractions
fit$method.modFit <- method.modFit
fit$maxit.modFit <- maxit.modFit
fit$calls <- calls
fit$time <- fit_time
# We also need the model for summary and plotting
fit$mkinmod <- mkinmod
# We need data and predictions for summary and plotting
fit$observed <- observed
fit$obs_vars <- obs_vars
fit$predicted <- mkin_wide_to_long(out_predicted, time = "time")
# Backtransform parameters
bparms.optim = backtransform_odeparms(fit$par, fit$mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
bparms.fixed = c(state.ini.fixed, parms.fixed)
bparms.all = c(bparms.optim, parms.fixed)
# Collect initial parameter values in three dataframes
fit$start <- data.frame(value = c(state.ini.optim,
parms.optim))
fit$start$type = c(rep("state", length(state.ini.optim)),
rep("deparm", length(parms.optim)))
fit$start_transformed = data.frame(
value = c(state.ini.optim, transparms.optim),
lower = lower,
upper = upper)
fit$fixed <- data.frame(value = c(state.ini.fixed, parms.fixed))
fit$fixed$type = c(rep("state", length(state.ini.fixed)),
rep("deparm", length(parms.fixed)))
# Collect observed, predicted, residuals and weighting
data <- merge(fit$observed, fit$predicted, by = c("time", "name"))
data$name <- ordered(data$name, levels = obs_vars)
data <- data[order(data$name, data$time), ]
fit$data <- data.frame(time = data$time,
variable = data$name,
observed = data$value.x,
predicted = data$value.y)
fit$data$residual <- fit$data$observed - fit$data$predicted
if (!is.null(data$err.ini)) fit$data$err.ini <- data$err.ini
if (!is.null(err)) fit$data[[err]] <- data[[err]]
fit$atol <- atol
fit$rtol <- rtol
fit$weight.ini <- weight.ini
fit$reweight.method <- reweight.method
fit$reweight.tol <- reweight.tol
fit$reweight.max.iter <- reweight.max.iter
# Return different sets of backtransformed parameters for summary and plotting
fit$bparms.optim <- bparms.optim
fit$bparms.fixed <- bparms.fixed
# Return ode and state parameters for further fitting
fit$bparms.ode <- bparms.all[mkinmod$parms]
fit$bparms.state <- c(bparms.all[setdiff(names(bparms.all), names(fit$bparms.ode))],
state.ini.fixed)
names(fit$bparms.state) <- gsub("_0$", "", names(fit$bparms.state))
fit$date <- date()
class(fit) <- c("mkinfit", "modFit")
return(fit)
}
summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, ...) {
param <- object$par
pnames <- names(param)
bpnames <- names(object$bparms.optim)
p <- length(param)
mod_vars <- names(object$mkinmod$diffs)
covar <- try(solve(0.5*object$hessian), silent = TRUE) # unscaled covariance
rdf <- object$df.residual
resvar <- object$ssr / rdf
if (!is.numeric(covar)) {
covar <- NULL
se <- lci <- uci <- tval <- pval1 <- pval2 <- rep(NA, p)
} else {
rownames(covar) <- colnames(covar) <- pnames
se <- sqrt(diag(covar) * resvar)
lci <- param + qt(alpha/2, rdf) * se
uci <- param + qt(1-alpha/2, rdf) * se
tval <- param/se
pval1 <- 2 * pt(abs(tval), rdf, lower.tail = FALSE)
pval2 <- pt(abs(tval), rdf, lower.tail = FALSE)
}
names(se) <- pnames
modVariance <- object$ssr / length(object$residuals)
param <- cbind(param, se, lci, uci, tval, pval1, pval2)
dimnames(param) <- list(pnames, c("Estimate", "Std. Error", "Lower", "Upper",
"t value", "Pr(>|t|)", "Pr(>t)"))
bparam <- cbind(Estimate = object$bparms.optim, Lower = NA, Upper = NA)
# Transform boundaries of CI for one parameter at a time,
# with the exception of sets of formation fractions (single fractions are OK).
f_names_skip <- character(0)
for (box in mod_vars) { # Figure out sets of fractions to skip
f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE)
n_paths <- length(f_names)
if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names)
}
for (pname in pnames) {
if (!pname %in% f_names_skip) {
par.lower <- param[pname, "Lower"]
par.upper <- param[pname, "Upper"]
names(par.lower) <- names(par.upper) <- pname
bpl <- backtransform_odeparms(par.lower, object$mkinmod,
object$transform_rates,
object$transform_fractions)
bpu <- backtransform_odeparms(par.upper, object$mkinmod,
object$transform_rates,
object$transform_fractions)
bparam[names(bpl), "Lower"] <- bpl
bparam[names(bpu), "Upper"] <- bpu
}
}
ans <- list(
version = as.character(packageVersion("mkin")),
Rversion = paste(R.version$major, R.version$minor, sep="."),
date.fit = object$date,
date.summary = date(),
solution_type = object$solution_type,
method.modFit = object$method.modFit,
warning = object$warning,
use_of_ff = object$mkinmod$use_of_ff,
weight.ini = object$weight.ini,
reweight.method = object$reweight.method,
residuals = object$residuals,
residualVariance = resvar,
sigma = sqrt(resvar),
modVariance = modVariance,
df = c(p, rdf),
cov.unscaled = covar,
cov.scaled = covar * resvar,
info = object$info,
niter = object$iterations,
calls = object$calls,
time = object$time,
stopmess = message,
par = param,
bpar = bparam)
ans$diffs <- object$mkinmod$diffs
if(data) ans$data <- object$data
ans$start <- object$start
ans$start_transformed <- object$start_transformed
ans$fixed <- object$fixed
ans$errmin <- mkinerrmin(object, alpha = 0.05)
ans$bparms.ode <- object$bparms.ode
ep <- endpoints(object)
if (length(ep$ff) != 0)
ans$ff <- ep$ff
if(distimes) ans$distimes <- ep$distimes
if(length(ep$SFORB) != 0) ans$SFORB <- ep$SFORB
class(ans) <- c("summary.mkinfit", "summary.modFit")
return(ans)
}
# Expanded from print.summary.modFit
print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat("mkin version: ", x$version, "\n")
cat("R version: ", x$Rversion, "\n")
cat("Date of fit: ", x$date.fit, "\n")
cat("Date of summary:", x$date.summary, "\n")
if (!is.null(x$warning)) cat("\n\nWarning:", x$warning, "\n\n")
cat("\nEquations:\n")
writeLines(strwrap(x[["diffs"]], exdent = 11))
df <- x$df
rdf <- df[2]
cat("\nModel predictions using solution type", x$solution_type, "\n")
cat("\nFitted with method", x$method.modFit,
"using", x$calls, "model solutions performed in", x$time[["elapsed"]], "s\n")
cat("\nWeighting:", x$weight.ini)
if(!is.null(x$reweight.method)) cat(" then iterative reweighting method",
x$reweight.method)
cat("\n")
cat("\nStarting values for parameters to be optimised:\n")
print(x$start)
cat("\nStarting values for the transformed parameters actually optimised:\n")
print(x$start_transformed)
cat("\nFixed parameter values:\n")
if(length(x$fixed$value) == 0) cat("None\n")
else print(x$fixed)
cat("\nOptimised, transformed parameters:\n")
print(signif(x$par, digits = digits))
if (x$calls > 0) {
cat("\nParameter correlation:\n")
if (!is.null(x$cov.unscaled)){
Corr <- cov2cor(x$cov.unscaled)
rownames(Corr) <- colnames(Corr) <- rownames(x$par)
print(Corr, digits = digits, ...)
} else {
cat("Could not estimate covariance matrix; singular system:\n")
}
}
cat("\nResidual standard error:",
format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n")
cat("\nBacktransformed parameters:\n")
print(signif(x$bpar, digits = digits))
cat("\nChi2 error levels in percent:\n")
x$errmin$err.min <- 100 * x$errmin$err.min
print(x$errmin, digits=digits,...)
printSFORB <- !is.null(x$SFORB)
if(printSFORB){
cat("\nEstimated Eigenvalues of SFORB model(s):\n")
print(x$SFORB, digits=digits,...)
}
printff <- !is.null(x$ff)
if(printff){
cat("\nResulting formation fractions:\n")
print(data.frame(ff = x$ff), digits=digits,...)
}
printdistimes <- !is.null(x$distimes)
if(printdistimes){
cat("\nEstimated disappearance times:\n")
print(x$distimes, digits=digits,...)
}
printdata <- !is.null(x$data)
if (printdata){
cat("\nData:\n")
print(format(x$data, digits = digits, ...), row.names = FALSE)
}
invisible(x)
}
# vim: set ts=2 sw=2 expandtab:
|