1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
|
utils::globalVariables(c("name", "time", "value"))
#' Fit a kinetic model to data with one or more state variables
#'
#' This function maximises the likelihood of the observed data using the Port
#' algorithm [stats::nlminb()], and the specified initial or fixed
#' parameters and starting values. In each step of the optimisation, the
#' kinetic model is solved using the function [mkinpredict()], except
#' if an analytical solution is implemented, in which case the model is solved
#' using the degradation function in the [mkinmod] object. The
#' parameters of the selected error model are fitted simultaneously with the
#' degradation model parameters, as both of them are arguments of the
#' likelihood function.
#'
#' Per default, parameters in the kinetic models are internally transformed in
#' order to better satisfy the assumption of a normal distribution of their
#' estimators.
#'
#' @param mkinmod A list of class [mkinmod], containing the kinetic
#' model to be fitted to the data, or one of the shorthand names ("SFO",
#' "FOMC", "DFOP", "HS", "SFORB", "IORE"). If a shorthand name is given, a
#' parent only degradation model is generated for the variable with the
#' highest value in \code{observed}.
#' @param observed A dataframe with the observed data. The first column called
#' "name" must contain the name of the observed variable for each data point.
#' The second column must contain the times of observation, named "time".
#' The third column must be named "value" and contain the observed values.
#' Zero values in the "value" column will be removed, with a warning, in
#' order to avoid problems with fitting the two-component error model. This
#' is not expected to be a problem, because in general, values of zero are
#' not observed in degradation data, because there is a lower limit of
#' detection.
#' @param parms.ini A named vector of initial values for the parameters,
#' including parameters to be optimised and potentially also fixed parameters
#' as indicated by \code{fixed_parms}. If set to "auto", initial values for
#' rate constants are set to default values. Using parameter names that are
#' not in the model gives an error.
#'
#' It is possible to only specify a subset of the parameters that the model
#' needs. You can use the parameter lists "bparms.ode" from a previously
#' fitted model, which contains the differential equation parameters from
#' this model. This works nicely if the models are nested. An example is
#' given below.
#' @param state.ini A named vector of initial values for the state variables of
#' the model. In case the observed variables are represented by more than one
#' model variable, the names will differ from the names of the observed
#' variables (see \code{map} component of [mkinmod]). The default
#' is to set the initial value of the first model variable to the mean of the
#' time zero values for the variable with the maximum observed value, and all
#' others to 0. If this variable has no time zero observations, its initial
#' value is set to 100.
#' @param err.ini A named vector of initial values for the error model
#' parameters to be optimised. If set to "auto", initial values are set to
#' default values. Otherwise, inital values for all error model parameters
#' must be given.
#' @param fixed_parms The names of parameters that should not be optimised but
#' rather kept at the values specified in \code{parms.ini}. Alternatively,
#' a named numeric vector of parameters to be fixed, regardless of the values
#' in parms.ini.
#' @param fixed_initials The names of model variables for which the initial
#' state at time 0 should be excluded from the optimisation. Defaults to all
#' state variables except for the first one.
#' @param from_max_mean If this is set to TRUE, and the model has only one
#' observed variable, then data before the time of the maximum observed value
#' (after averaging for each sampling time) are discarded, and this time is
#' subtracted from all remaining time values, so the time of the maximum
#' observed mean value is the new time zero.
#' @param solution_type If set to "eigen", the solution of the system of
#' differential equations is based on the spectral decomposition of the
#' coefficient matrix in cases that this is possible. If set to "deSolve", a
#' numerical [ode solver from package deSolve][deSolve::ode()] is used. If
#' set to "analytical", an analytical solution of the model is used. This is
#' only implemented for relatively simple degradation models. The default is
#' "auto", which uses "analytical" if possible, otherwise "deSolve" if a
#' compiler is present, and "eigen" if no compiler is present and the model
#' can be expressed using eigenvalues and eigenvectors.
#' @param method.ode The solution method passed via [mkinpredict()]
#' to [deSolve::ode()] in case the solution type is "deSolve". The default
#' "lsoda" is performant, but sometimes fails to converge.
#' @param use_compiled If set to \code{FALSE}, no compiled version of the
#' [mkinmod] model is used in the calls to [mkinpredict()] even if a compiled
#' version is present.
#' @param control A list of control arguments passed to [stats::nlminb()].
#' @param transform_rates Boolean specifying if kinetic rate constants should
#' be transformed in the model specification used in the fitting for better
#' compliance with the assumption of normal distribution of the estimator. If
#' TRUE, also alpha and beta parameters of the FOMC model are
#' log-transformed, as well as k1 and k2 rate constants for the DFOP and HS
#' models and the break point tb of the HS model. If FALSE, zero is used as
#' a lower bound for the rates in the optimisation.
#' @param transform_fractions Boolean specifying if formation fractions
#' should be transformed in the model specification used in the fitting for
#' better compliance with the assumption of normal distribution of the
#' estimator. The default (TRUE) is to do transformations. If TRUE,
#' the g parameter of the DFOP model is also transformed. Transformations
#' are described in [transform_odeparms].
#' @param quiet Suppress printing out the current value of the negative
#' log-likelihood after each improvement?
#' @param atol Absolute error tolerance, passed to [deSolve::ode()]. Default
#' is 1e-8, which is lower than the default in the [deSolve::lsoda()]
#' function which is used per default.
#' @param rtol Absolute error tolerance, passed to [deSolve::ode()]. Default
#' is 1e-10, much lower than in [deSolve::lsoda()].
#' @param error_model If the error model is "const", a constant standard
#' deviation is assumed.
#'
#' If the error model is "obs", each observed variable is assumed to have its
#' own variance.
#'
#' If the error model is "tc" (two-component error model), a two component
#' error model similar to the one described by Rocke and Lorenzato (1995) is
#' used for setting up the likelihood function. Note that this model
#' deviates from the model by Rocke and Lorenzato, as their model implies
#' that the errors follow a lognormal distribution for large values, not a
#' normal distribution as assumed by this method.
#' @param error_model_algorithm If "auto", the selected algorithm depends on
#' the error model. If the error model is "const", unweighted nonlinear
#' least squares fitting ("OLS") is selected. If the error model is "obs", or
#' "tc", the "d_3" algorithm is selected.
#'
#' The algorithm "d_3" will directly minimize the negative log-likelihood
#' and independently also use the three step algorithm described below.
#' The fit with the higher likelihood is returned.
#'
#' The algorithm "direct" will directly minimize the negative log-likelihood.
#'
#' The algorithm "twostep" will minimize the negative log-likelihood after an
#' initial unweighted least squares optimisation step.
#'
#' The algorithm "threestep" starts with unweighted least squares, then
#' optimizes only the error model using the degradation model parameters
#' found, and then minimizes the negative log-likelihood with free
#' degradation and error model parameters.
#'
#' The algorithm "fourstep" starts with unweighted least squares, then
#' optimizes only the error model using the degradation model parameters
#' found, then optimizes the degradation model again with fixed error model
#' parameters, and finally minimizes the negative log-likelihood with free
#' degradation and error model parameters.
#'
#' The algorithm "IRLS" (Iteratively Reweighted Least Squares) starts with
#' unweighted least squares, and then iterates optimization of the error
#' model parameters and subsequent optimization of the degradation model
#' using those error model parameters, until the error model parameters
#' converge.
#' @param reweight.tol Tolerance for the convergence criterion calculated from
#' the error model parameters in IRLS fits.
#' @param reweight.max.iter Maximum number of iterations in IRLS fits.
#' @param trace_parms Should a trace of the parameter values be listed?
#' @param test_residuals Should the residuals be tested for normal distribution?
#' @param \dots Further arguments that will be passed on to
#' [deSolve::ode()].
#' @importFrom stats nlminb aggregate dist shapiro.test
#' @return A list with "mkinfit" in the class attribute.
#' @note When using the "IORE" submodel for metabolites, fitting with
#' "transform_rates = TRUE" (the default) often leads to failures of the
#' numerical ODE solver. In this situation it may help to switch off the
#' internal rate transformation.
#' @author Johannes Ranke
#' @seealso [summary.mkinfit], [plot.mkinfit], [parms] and [lrtest].
#'
#' Comparisons of models fitted to the same data can be made using
#' \code{\link{AIC}} by virtue of the method \code{\link{logLik.mkinfit}}.
#'
#' Fitting of several models to several datasets in a single call to
#' \code{\link{mmkin}}.
#' @references Rocke DM and Lorenzato S (1995) A two-component model
#' for measurement error in analytical chemistry. *Technometrics* 37(2), 176-184.
#'
#' Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical
#' Degradation Data. *Environments* 6(12) 124
#' [doi:10.3390/environments6120124](https://doi.org/10.3390/environments6120124).
#' @examples
#'
#' # Use shorthand notation for parent only degradation
#' fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
#' summary(fit)
#'
#' # One parent compound, one metabolite, both single first order.
#' # We remove zero values from FOCUS dataset D in order to avoid warnings
#' FOCUS_D <- subset(FOCUS_2006_D, value != 0)
#' # Use mkinsub for convenience in model formulation. Pathway to sink included per default.
#' SFO_SFO <- mkinmod(
#' parent = mkinsub("SFO", "m1"),
#' m1 = mkinsub("SFO"))
#'
#' # Fit the model quietly to the FOCUS example dataset D using defaults
#' fit <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE)
#' plot_sep(fit)
#' # As lower parent values appear to have lower variance, we try an alternative error model
#' fit.tc <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc")
#' # This avoids the warning, and the likelihood ratio test confirms it is preferable
#' lrtest(fit.tc, fit)
#' # We can also allow for different variances of parent and metabolite as error model
#' fit.obs <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "obs")
#' # The two-component error model has significantly higher likelihood
#' lrtest(fit.obs, fit.tc)
#' parms(fit.tc)
#' endpoints(fit.tc)
#'
#' # We can show a quick (only one replication) benchmark for this case, as we
#' # have several alternative solution methods for the model. We skip
#' # uncompiled deSolve, as it is so slow. More benchmarks are found in the
#' # benchmark vignette
#' \dontrun{
#' if(require(rbenchmark)) {
#' benchmark(replications = 1, order = "relative", columns = c("test", "relative", "elapsed"),
#' deSolve_compiled = mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc",
#' solution_type = "deSolve", use_compiled = TRUE),
#' eigen = mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc",
#' solution_type = "eigen"),
#' analytical = mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc",
#' solution_type = "analytical"))
#' }
#' }
#'
#' # Use stepwise fitting, using optimised parameters from parent only fit, FOMC-SFO
#' \dontrun{
#' FOMC_SFO <- mkinmod(
#' parent = mkinsub("FOMC", "m1"),
#' m1 = mkinsub("SFO"))
#' fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_D, quiet = TRUE)
#' # Again, we get a warning and try a more sophisticated error model
#' fit.FOMC_SFO.tc <- mkinfit(FOMC_SFO, FOCUS_D, quiet = TRUE, error_model = "tc")
#' # This model has a higher likelihood, but not significantly so
#' lrtest(fit.tc, fit.FOMC_SFO.tc)
#' # Also, the missing standard error for log_beta and the t-tests for alpha
#' # and beta indicate overparameterisation
#' summary(fit.FOMC_SFO.tc, data = FALSE)
#'
#' # We can easily use starting parameters from the parent only fit (only for illustration)
#' fit.FOMC = mkinfit("FOMC", FOCUS_2006_D, quiet = TRUE, error_model = "tc")
#' fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_D, quiet = TRUE,
#' parms.ini = fit.FOMC$bparms.ode, error_model = "tc")
#' }
#' @export
mkinfit <- function(mkinmod, observed,
parms.ini = "auto",
state.ini = "auto",
err.ini = "auto",
fixed_parms = NULL,
fixed_initials = names(mkinmod$diffs)[-1],
from_max_mean = FALSE,
solution_type = c("auto", "analytical", "eigen", "deSolve"),
method.ode = "lsoda",
use_compiled = "auto",
control = list(eval.max = 300, iter.max = 200),
transform_rates = TRUE,
transform_fractions = TRUE,
quiet = FALSE,
atol = 1e-8, rtol = 1e-10,
error_model = c("const", "obs", "tc"),
error_model_algorithm = c("auto", "d_3", "direct", "twostep", "threestep", "fourstep", "IRLS", "OLS"),
reweight.tol = 1e-8, reweight.max.iter = 10,
trace_parms = FALSE,
test_residuals = FALSE,
...)
{
call <- match.call()
summary_warnings <- character()
# Derive the name used for the model
if (is.character(mkinmod)) mkinmod_name <- mkinmod
else mkinmod_name <- deparse(substitute(mkinmod))
# Check mkinmod and generate a model for the variable whith the highest value
# if a suitable string is given
parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE", "logistic")
if (class(mkinmod) != "mkinmod") {
presumed_parent_name = observed[which.max(observed$value), "name"]
if (mkinmod[[1]] %in% parent_models_available) {
speclist <- list(list(type = mkinmod, sink = TRUE))
names(speclist) <- presumed_parent_name
mkinmod <- mkinmod(speclist = speclist, use_of_ff = "max")
} else {
stop("Argument mkinmod must be of class mkinmod or a string containing one of\n ",
paste(parent_models_available, collapse = ", "))
}
}
# Get the names of the state variables in the model
mod_vars <- names(mkinmod$diffs)
# Get the names of observed variables
obs_vars <- names(mkinmod$spec)
# Subset observed data with names of observed data in the model and remove NA values
observed <- subset(observed, name %in% obs_vars)
observed <- subset(observed, !is.na(value))
# Also remove zero values to avoid instabilities (e.g. of the 'tc' error model)
if (any(observed$value == 0)) {
zero_warning <- "Observations with value of zero were removed from the data"
summary_warnings <- c(summary_warnings, Z = zero_warning)
warning(zero_warning)
observed <- subset(observed, value != 0)
}
# Sort observed values for efficient analytical predictions
observed$name <- ordered(observed$name, levels = obs_vars)
observed <- observed[order(observed$name, observed$time), ]
# Obtain data for decline from maximum mean value if requested
if (from_max_mean) {
# This is only used for simple decline models
if (length(obs_vars) > 1)
stop("Decline from maximum is only implemented for models with a single observed variable")
observed$name <- as.character(observed$name)
means <- aggregate(value ~ time, data = observed, mean, na.rm=TRUE)
t_of_max <- means[which.max(means$value), "time"]
observed <- subset(observed, time >= t_of_max)
observed$time <- observed$time - t_of_max
}
# Number observations used for fitting
n_observed <- nrow(observed)
# Define starting values for parameters where not specified by the user
if (parms.ini[[1]] == "auto") parms.ini = vector()
# Override parms.ini for parameters given as a numeric vector in
# fixed_parms
if (is.numeric(fixed_parms)) {
fixed_parm_names <- names(fixed_parms)
parms.ini[fixed_parm_names] <- fixed_parms
fixed_parms <- fixed_parm_names
}
# Warn for inital parameter specifications that are not in the model
wrongpar.names <- setdiff(names(parms.ini), mkinmod$parms)
if (length(wrongpar.names) > 0) {
warning("Initial parameter(s) ", paste(wrongpar.names, collapse = ", "),
" not used in the model")
parms.ini <- parms.ini[setdiff(names(parms.ini), wrongpar.names)]
}
# Warn that the sum of formation fractions may exceed one if they are not
# fitted in the transformed way
if (mkinmod$use_of_ff == "max" & transform_fractions == FALSE) {
warning("The sum of formation fractions may exceed one if you do not use ",
"transform_fractions = TRUE." )
for (box in mod_vars) {
# Stop if formation fractions are not transformed and we have no sink
if (mkinmod$spec[[box]]$sink == FALSE) {
stop("If formation fractions are not transformed during the fitting, ",
"it is not supported to turn off pathways to sink.\n ",
"Consider turning on the transformation of formation fractions or ",
"setting up a model with use_of_ff = 'min'.\n")
}
}
}
# Do not allow fixing formation fractions if we are using the ilr transformation,
# this is not supported
if (transform_fractions == TRUE && length(fixed_parms) > 0) {
if (any(grepl("^f_", fixed_parms))) {
stop("Fixing formation fractions is not supported when using the ilr ",
"transformation.")
}
}
# Set initial parameter values, including a small increment (salt)
# to avoid linear dependencies (singular matrix) in Eigenvalue based solutions
k_salt = 0
defaultpar.names <- setdiff(mkinmod$parms, names(parms.ini))
for (parmname in defaultpar.names) {
# Default values for rate constants, depending on the parameterisation
if (grepl("^k", parmname)) {
parms.ini[parmname] = 0.1 + k_salt
k_salt = k_salt + 1e-4
}
# Default values for rate constants for reversible binding
if (grepl("free_bound$", parmname)) parms.ini[parmname] = 0.1
if (grepl("bound_free$", parmname)) parms.ini[parmname] = 0.02
# Default values for IORE exponents
if (grepl("^N", parmname)) parms.ini[parmname] = 1.1
# Default values for the FOMC, DFOP and HS models
if (parmname == "alpha") parms.ini[parmname] = 1
if (parmname == "beta") parms.ini[parmname] = 10
if (parmname == "k1") parms.ini[parmname] = 0.1
if (parmname == "k2") parms.ini[parmname] = 0.01
if (parmname == "tb") parms.ini[parmname] = 5
if (parmname == "g") parms.ini[parmname] = 0.5
if (parmname == "kmax") parms.ini[parmname] = 0.1
if (parmname == "k0") parms.ini[parmname] = 0.0001
if (parmname == "r") parms.ini[parmname] = 0.2
}
# Default values for formation fractions in case they are present
for (obs_var in obs_vars) {
origin <- mkinmod$map[[obs_var]][[1]]
f_names <- mkinmod$parms[grep(paste0("^f_", origin), mkinmod$parms)]
if (length(f_names) > 0) {
# We need to differentiate between default and specified fractions
# and set the unspecified to 1 - sum(specified)/n_unspecified
f_default_names <- intersect(f_names, defaultpar.names)
f_specified_names <- setdiff(f_names, defaultpar.names)
sum_f_specified = sum(parms.ini[f_specified_names])
if (sum_f_specified > 1) {
stop("Starting values for the formation fractions originating from ",
origin, " sum up to more than 1.")
}
if (mkinmod$spec[[obs_var]]$sink) n_unspecified = length(f_default_names) + 1
else {
n_unspecified = length(f_default_names)
}
parms.ini[f_default_names] <- (1 - sum_f_specified) / n_unspecified
}
}
# Set default for state.ini if appropriate
parent_name = names(mkinmod$spec)[[1]]
parent_time_0 = subset(observed, time == 0 & name == parent_name)$value
parent_time_0_mean = mean(parent_time_0, na.rm = TRUE)
if (is.na(parent_time_0_mean)) {
state.ini_auto = c(100, rep(0, length(mkinmod$diffs) - 1))
} else {
state.ini_auto = c(parent_time_0_mean, rep(0, length(mkinmod$diffs) - 1))
}
names(state.ini_auto) <- mod_vars
if (state.ini[1] == "auto") {
state.ini_used <- state.ini_auto
} else {
state.ini_used <- state.ini_auto
state.ini_good <- intersect(names(mkinmod$diffs), names(state.ini))
state.ini_used[state.ini_good] <- state.ini[state.ini_good]
}
state.ini <- state.ini_used
# Name the inital state variable values if they are not named yet
if(is.null(names(state.ini))) names(state.ini) <- mod_vars
# Transform initial parameter values for fitting
transparms.ini <- transform_odeparms(parms.ini, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
# Parameters to be optimised:
# Kinetic parameters in parms.ini whose names are not in fixed_parms
parms.fixed <- parms.ini[fixed_parms]
parms.optim <- parms.ini[setdiff(names(parms.ini), fixed_parms)]
transparms.fixed <- transform_odeparms(parms.fixed, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
transparms.optim <- transform_odeparms(parms.optim, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
# Inital state variables in state.ini whose names are not in fixed_initials
state.ini.fixed <- state.ini[fixed_initials]
state.ini.optim <- state.ini[setdiff(names(state.ini), fixed_initials)]
# Preserve names of state variables before renaming initial state variable
# parameters
state.ini.optim.boxnames <- names(state.ini.optim)
state.ini.fixed.boxnames <- names(state.ini.fixed)
if(length(state.ini.optim) > 0) {
names(state.ini.optim) <- paste(names(state.ini.optim), "0", sep="_")
}
if(length(state.ini.fixed) > 0) {
names(state.ini.fixed) <- paste(names(state.ini.fixed), "0", sep="_")
}
# Decide if the solution of the model can be based on a simple analytical
# formula, the spectral decomposition of the matrix (fundamental system)
# or a numeric ode solver from the deSolve package
# Prefer deSolve over eigen if a compiled model is present and use_compiled
# is not set to FALSE
solution_type = match.arg(solution_type)
if (solution_type == "analytical" && !is.function(mkinmod$deg_func))
stop("Analytical solution not implemented for this model.")
if (solution_type == "eigen" && !is.matrix(mkinmod$coefmat))
stop("Eigenvalue based solution not possible, coefficient matrix not present.")
if (solution_type == "auto") {
if (length(mkinmod$spec) == 1 || is.function(mkinmod$deg_func)) {
solution_type = "analytical"
} else {
if (!is.null(mkinmod$cf) & use_compiled[1] != FALSE) {
try_dynlib <- try(inline::getDynLib(mkinmod$cf)[["path"]])
if (inherits(try_dynlib, "try-error")) {
mkinmod$cf <- inline::readDynLib(mkinmod$cf_name, mkinmod$cf_dir)
}
solution_type = "deSolve"
} else {
if (is.matrix(mkinmod$coefmat)) {
solution_type = "eigen"
if (max(observed$value, na.rm = TRUE) < 0.1) {
stop("The combination of small observed values (all < 0.1) and solution_type = eigen is error-prone")
}
} else {
solution_type = "deSolve"
}
}
}
}
# Get the error model and the algorithm for fitting
err_mod <- match.arg(error_model)
error_model_algorithm = match.arg(error_model_algorithm)
if (error_model_algorithm == "OLS") {
if (err_mod != "const") stop("OLS is only appropriate for constant variance")
}
if (error_model_algorithm == "auto") {
error_model_algorithm = switch(err_mod,
const = "OLS", obs = "d_3", tc = "d_3")
}
errparm_names <- switch(err_mod,
"const" = "sigma",
"obs" = paste0("sigma_", obs_vars),
"tc" = c("sigma_low", "rsd_high"))
errparm_names_optim <- if (error_model_algorithm == "OLS") NULL else errparm_names
# Define starting values for the error model
if (err.ini[1] != "auto") {
if (!identical(names(err.ini), errparm_names)) {
stop("Please supply initial values for error model components ", paste(errparm_names, collapse = ", "))
} else {
errparms = err.ini
}
} else {
if (err_mod == "const") {
errparms = 3
}
if (err_mod == "obs") {
errparms = rep(3, length(obs_vars))
}
if (err_mod == "tc") {
errparms <- c(sigma_low = 0.1, rsd_high = 0.1)
}
names(errparms) <- errparm_names
}
if (error_model_algorithm == "OLS") {
errparms_optim <- NULL
} else {
errparms_optim <- errparms
}
# Unique outtimes for model solution.
outtimes <- sort(unique(observed$time))
# Define the objective function for optimisation, including (back)transformations
cost_function <- function(P, trans = TRUE, OLS = FALSE, fixed_degparms = FALSE, fixed_errparms = FALSE, update_data = TRUE, ...)
{
assign("calls", calls + 1, inherits = TRUE) # Increase the model solution counter
# Trace parameter values if requested and if we are actually optimising
if(trace_parms & update_data) cat(format(P, width = 10, digits = 6), "\n")
# Determine local parameter values for the cost estimation
if (is.numeric(fixed_degparms)) {
cost_degparms <- fixed_degparms
cost_errparms <- P
degparms_fixed = TRUE
} else {
degparms_fixed = FALSE
}
if (is.numeric(fixed_errparms)) {
cost_degparms <- P
cost_errparms <- fixed_errparms
errparms_fixed = TRUE
} else {
errparms_fixed = FALSE
}
if (OLS) {
cost_degparms <- P
cost_errparms <- numeric(0)
}
if (!OLS & !degparms_fixed & !errparms_fixed) {
cost_degparms <- P[1:(length(P) - length(errparms))]
cost_errparms <- P[(length(cost_degparms) + 1):length(P)]
}
# Initial states for t0
if(length(state.ini.optim) > 0) {
odeini <- c(cost_degparms[1:length(state.ini.optim)], state.ini.fixed)
names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames)
} else {
odeini <- state.ini.fixed
names(odeini) <- state.ini.fixed.boxnames
}
odeparms.optim <- cost_degparms[(length(state.ini.optim) + 1):length(cost_degparms)]
if (trans == TRUE) {
odeparms <- c(odeparms.optim, transparms.fixed)
parms <- backtransform_odeparms(odeparms, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
} else {
parms <- c(odeparms.optim, parms.fixed)
}
# Solve the system with current parameter values
if (solution_type == "analytical") {
observed$predicted <- mkinmod$deg_func(observed, odeini, parms)
} else {
out <- mkinpredict(mkinmod, parms,
odeini, outtimes,
solution_type = solution_type,
use_compiled = use_compiled,
method.ode = method.ode,
atol = atol, rtol = rtol, ...)
observed_index <- cbind(as.character(observed$time), as.character(observed$name))
observed$predicted <- out[observed_index]
}
# Define standard deviation for each observation
if (err_mod == "const") {
observed$std <- if (OLS) NA else cost_errparms["sigma"]
}
if (err_mod == "obs") {
std_names <- paste0("sigma_", observed$name)
observed$std <- cost_errparms[std_names]
}
if (err_mod == "tc") {
observed$std <- sqrt(cost_errparms["sigma_low"]^2 + observed$predicted^2 * cost_errparms["rsd_high"]^2)
}
# Calculate model cost
if (OLS) {
# Cost is the sum of squared residuals
cost <- with(observed, sum((value - predicted)^2))
} else {
# Cost is the negative log-likelihood
cost <- - with(observed,
sum(dnorm(x = value, mean = predicted, sd = std, log = TRUE)))
}
# We update the current cost and data during the optimisation, not
# during hessian calculations
if (update_data) {
assign("current_data", observed, inherits = TRUE)
if (cost < cost.current) {
assign("cost.current", cost, inherits = TRUE)
if (!quiet) cat(ifelse(OLS, "Sum of squared residuals", "Negative log-likelihood"),
" at call ", calls, ": ", signif(cost.current, 6), "\n", sep = "")
}
}
return(cost)
}
names_optim <- c(names(state.ini.optim),
names(transparms.optim),
errparm_names_optim)
n_optim <- length(names_optim)
# Define lower and upper bounds other than -Inf and Inf for parameters
# for which no internal transformation is requested in the call to mkinfit
# and for optimised error model parameters
lower <- rep(-Inf, n_optim)
upper <- rep(Inf, n_optim)
names(lower) <- names(upper) <- names_optim
# IORE exponents are not transformed, but need a lower bound
index_N <- grep("^N", names(lower))
lower[index_N] <- 0
if (!transform_rates) {
index_k <- grep("^k_", names(lower))
lower[index_k] <- 0
index_k__iore <- grep("^k__iore_", names(lower))
lower[index_k__iore] <- 0
other_rate_parms <- intersect(c("alpha", "beta", "k1", "k2", "tb", "r"), names(lower))
lower[other_rate_parms] <- 0
}
if (!transform_fractions) {
index_f <- grep("^f_", names(upper))
lower[index_f] <- 0
upper[index_f] <- 1
other_fraction_parms <- intersect(c("g"), names(upper))
lower[other_fraction_parms] <- 0
upper[other_fraction_parms] <- 1
}
if (err_mod == "const") {
if (error_model_algorithm != "OLS") {
lower["sigma"] <- 0
}
}
if (err_mod == "obs") {
index_sigma <- grep("^sigma_", names(lower))
lower[index_sigma] <- 0
}
if (err_mod == "tc") {
lower["sigma_low"] <- 0
lower["rsd_high"] <- 0
}
# Counter for cost function evaluations
calls = 0
cost.current <- Inf
out_predicted <- NA
current_data <- NA
# Show parameter names if tracing is requested
if(trace_parms) cat(format(names_optim, width = 10), "\n")
#browser()
# Do the fit and take the time until the hessians are calculated
fit_time <- system.time({
degparms <- c(state.ini.optim, transparms.optim)
n_degparms <- length(degparms)
degparms_index <- seq(1, n_degparms)
errparms_index <- seq(n_degparms + 1, length.out = length(errparms))
if (error_model_algorithm == "d_3") {
if (!quiet) message("Directly optimising the complete model")
parms.start <- c(degparms, errparms)
fit_direct <- try(nlminb(parms.start, cost_function,
lower = lower[names(parms.start)],
upper = upper[names(parms.start)],
control = control, ...))
if (!inherits(fit_direct, "try-error")) {
fit_direct$logLik <- - cost.current
cost.current <- Inf # reset to avoid conflict with the OLS step
data_direct <- current_data # We need this later if it was better
direct_failed = FALSE
} else {
direct_failed = TRUE
}
}
if (error_model_algorithm != "direct") {
if (!quiet) message("Ordinary least squares optimisation")
fit <- nlminb(degparms, cost_function, control = control,
lower = lower[names(degparms)],
upper = upper[names(degparms)], OLS = TRUE, ...)
degparms <- fit$par
# Get the maximum likelihood estimate for sigma at the optimum parameter values
current_data$residual <- current_data$value - current_data$predicted
sigma_mle <- sqrt(sum(current_data$residual^2)/nrow(current_data))
# Use that estimate for the constant variance, or as first guess if err_mod = "obs"
if (err_mod != "tc") {
errparms[names(errparms)] <- sigma_mle
}
fit$par <- c(fit$par, errparms)
cost.current <- cost_function(c(degparms, errparms), OLS = FALSE)
fit$logLik <- - cost.current
}
if (error_model_algorithm %in% c("threestep", "fourstep", "d_3")) {
if (!quiet) message("Optimising the error model")
fit <- nlminb(errparms, cost_function, control = control,
lower = lower[names(errparms)],
upper = upper[names(errparms)],
fixed_degparms = degparms, ...)
errparms <- fit$par
}
if (error_model_algorithm == "fourstep") {
if (!quiet) message("Optimising the degradation model")
fit <- nlminb(degparms, cost_function, control = control,
lower = lower[names(degparms)],
upper = upper[names(degparms)],
fixed_errparms = errparms, ...)
degparms <- fit$par
}
if (error_model_algorithm %in%
c("direct", "twostep", "threestep", "fourstep", "d_3")) {
if (!quiet) message("Optimising the complete model")
parms.start <- c(degparms, errparms)
fit <- nlminb(parms.start, cost_function,
lower = lower[names(parms.start)],
upper = upper[names(parms.start)],
control = control, ...)
degparms <- fit$par[degparms_index]
errparms <- fit$par[errparms_index]
fit$logLik <- - cost.current
if (error_model_algorithm == "d_3") {
d_3_messages = c(
direct_failed = "Direct fitting failed, results of three-step fitting are returned",
same = "Direct fitting and three-step fitting yield approximately the same likelihood",
threestep = "Three-step fitting yielded a higher likelihood than direct fitting",
direct = "Direct fitting yielded a higher likelihood than three-step fitting")
if (direct_failed) {
if (!quiet) message(d_3_messages["direct_failed"])
fit$d_3_message <- d_3_messages["direct_failed"]
} else {
rel_diff <- abs((fit_direct$logLik - fit$logLik))/-mean(c(fit_direct$logLik, fit$logLik))
if (rel_diff < 0.0001) {
if (!quiet) message(d_3_messages["same"])
fit$d_3_message <- d_3_messages["same"]
} else {
if (fit$logLik > fit_direct$logLik) {
if (!quiet) message(d_3_messages["threestep"])
fit$d_3_message <- d_3_messages["threestep"]
} else {
if (!quiet) message(d_3_messages["direct"])
fit <- fit_direct
fit$d_3_message <- d_3_messages["direct"]
degparms <- fit$par[degparms_index]
errparms <- fit$par[errparms_index]
current_data <- data_direct
}
}
}
}
}
if (err_mod != "const" & error_model_algorithm == "IRLS") {
reweight.diff <- 1
n.iter <- 0
errparms_last <- errparms
while (reweight.diff > reweight.tol &
n.iter < reweight.max.iter) {
if (!quiet) message("Optimising the error model")
fit <- nlminb(errparms, cost_function, control = control,
lower = lower[names(errparms)],
upper = upper[names(errparms)],
fixed_degparms = degparms, ...)
errparms <- fit$par
if (!quiet) message("Optimising the degradation model")
fit <- nlminb(degparms, cost_function, control = control,
lower = lower[names(degparms)],
upper = upper[names(degparms)],
fixed_errparms = errparms, ...)
degparms <- fit$par
reweight.diff <- dist(rbind(errparms, errparms_last))
errparms_last <- errparms
fit$par <- c(fit$par, errparms)
cost.current <- cost_function(c(degparms, errparms), OLS = FALSE)
fit$logLik <- - cost.current
}
}
fit$hessian <- try(numDeriv::hessian(cost_function, c(degparms, errparms), OLS = FALSE,
update_data = FALSE), silent = TRUE)
dimnames(fit$hessian) <- list(names(c(degparms, errparms)),
names(c(degparms, errparms)))
# Backtransform parameters
bparms.optim = backtransform_odeparms(degparms, mkinmod,
transform_rates = transform_rates,
transform_fractions = transform_fractions)
bparms.fixed = c(state.ini.fixed, parms.fixed)
bparms.all = c(bparms.optim, parms.fixed)
fit$hessian_notrans <- try(numDeriv::hessian(cost_function, c(bparms.optim, errparms),
OLS = FALSE, trans = FALSE, update_data = FALSE), silent = TRUE)
dimnames(fit$hessian_notrans) <- list(names(c(bparms.optim, errparms)),
names(c(bparms.optim, errparms)))
})
fit$call <- call
fit$error_model_algorithm <- error_model_algorithm
if (fit$convergence != 0) {
convergence_warning = paste0("Optimisation did not converge:\n", fit$message)
summary_warnings <- c(summary_warnings, C = convergence_warning)
warning(convergence_warning)
} else {
if(!quiet) message("Optimisation successfully terminated.\n")
}
# We need to return some more data for summary and plotting
fit$solution_type <- solution_type
fit$transform_rates <- transform_rates
fit$transform_fractions <- transform_fractions
fit$reweight.tol <- reweight.tol
fit$reweight.max.iter <- reweight.max.iter
fit$control <- control
fit$calls <- calls
fit$time <- fit_time
# We also need the model and a model name for summary and plotting
fit$mkinmod <- mkinmod
fit$mkinmod$name <- mkinmod_name
fit$obs_vars <- obs_vars
# Residual sum of squares as a function of the fitted parameters
fit$rss <- function(P) cost_function(P, OLS = TRUE, update_data = FALSE)
# Log-likelihood with possibility to fix degparms or errparms
fit$ll <- function(P, fixed_degparms = FALSE, fixed_errparms = FALSE) {
- cost_function(P, trans = FALSE, fixed_degparms = fixed_degparms,
fixed_errparms = fixed_errparms, OLS = FALSE, update_data = FALSE)
}
# Collect initial parameter values in three dataframes
fit$start <- data.frame(value = c(state.ini.optim,
parms.optim, errparms_optim))
fit$start$type = c(rep("state", length(state.ini.optim)),
rep("deparm", length(parms.optim)),
rep("error", length(errparms_optim)))
fit$start_transformed = data.frame(
value = c(state.ini.optim, transparms.optim, errparms_optim),
lower = lower,
upper = upper)
fit$fixed <- data.frame(value = c(state.ini.fixed, parms.fixed))
fit$fixed$type = c(rep("state", length(state.ini.fixed)),
rep("deparm", length(parms.fixed)))
fit$data <- data.frame(time = current_data$time,
variable = current_data$name,
observed = current_data$value,
predicted = current_data$predicted)
fit$data$residual <- fit$data$observed - fit$data$predicted
fit$atol <- atol
fit$rtol <- rtol
fit$err_mod <- err_mod
# Return different sets of backtransformed parameters for summary and plotting
fit$bparms.optim <- bparms.optim
fit$bparms.fixed <- bparms.fixed
# Return ode and state parameters for further fitting
fit$bparms.ode <- bparms.all[mkinmod$parms]
fit$bparms.state <- c(bparms.all[setdiff(names(bparms.all), names(fit$bparms.ode))],
state.ini.fixed)
names(fit$bparms.state) <- gsub("_0$", "", names(fit$bparms.state))
fit$errparms <- errparms
fit$df.residual <- n_observed - length(c(degparms, errparms))
# Assign the class here so method dispatch works for residuals
class(fit) <- c("mkinfit")
if (test_residuals) {
# Check for normal distribution of residuals
fit$shapiro.p <- shapiro.test(residuals(fit, standardized = TRUE))$p.value
if (fit$shapiro.p < 0.05) {
shapiro_warning <- paste("Shapiro-Wilk test for standardized residuals: p = ", signif(fit$shapiro.p, 3))
warning(shapiro_warning)
summary_warnings <- c(summary_warnings, S = shapiro_warning)
}
}
fit$summary_warnings <- summary_warnings
fit$date <- date()
fit$version <- as.character(utils::packageVersion("mkin"))
fit$Rversion <- paste(R.version$major, R.version$minor, sep=".")
return(fit)
}
|