aboutsummaryrefslogtreecommitdiff
path: root/R/mkinmod.R
blob: 4587e21081f7c53379a39b7b141aa25b6f92f676 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#' Function to set up a kinetic model with one or more state variables
#'
#' The function usually takes several expressions, each assigning a compound
#' name to a list, specifying the kinetic model type and reaction or transfer
#' to other observed compartments. Instead of specifying several expressions, a
#' list of lists can be given in the speclist argument.
#'
#' For the definition of model types and their parameters, the equations given
#' in the FOCUS and NAFTA guidance documents are used.
#'
#' @param ...  For each observed variable, a list has to be specified as an
#'   argument, containing at least a component \code{type}, specifying the type
#'   of kinetics to use for the variable. Currently, single first order
#'   kinetics "SFO", indeterminate order rate equation kinetics "IORE", or
#'   single first order with reversible binding "SFORB" are implemented for all
#'   variables, while "FOMC", "DFOP" and "HS" can additionally be chosen for
#'   the first variable which is assumed to be the source compartment.
#'   Additionally, each component of the list can include a character vector
#'   \code{to}, specifying names of variables to which a transfer is to be
#'   assumed in the model.  If the argument \code{use_of_ff} is set to "min"
#'   (default) and the model for the compartment is "SFO" or "SFORB", an
#'   additional component of the list can be "sink=FALSE" effectively fixing
#'   the flux to sink to zero.
#' @param use_of_ff Specification of the use of formation fractions in the
#'   model equations and, if applicable, the coefficient matrix. If "min", a
#'   minimum use of formation fractions is made in order to avoid fitting the
#'   product of formation fractions and rate constants. If "max", formation
#'   fractions are always used.
#' @param speclist The specification of the observed variables and their
#'   submodel types and pathways can be given as a single list using this
#'   argument. Default is NULL.
#' @param quiet Should messages be suppressed?
#' @param verbose If \code{TRUE}, passed to \code{\link{cfunction}} if
#'   applicable to give detailed information about the C function being built.
#' @importFrom methods signature
#' @importFrom pkgbuild has_compiler
#' @importFrom inline cfunction
#' @return A list of class \code{mkinmod} for use with \code{\link{mkinfit}},
#'   containing, among others,
#'   \item{diffs}{
#'     A vector of string representations of differential equations, one for
#'     each modelling variable.
#'   }
#'   \item{map}{
#'     A list containing named character vectors for each observed variable,
#'     specifying the modelling variables by which it is represented.
#'   }
#'   \item{use_of_ff}{
#'     The content of \code{use_of_ff} is passed on in this list component.
#'   }
#'   \item{coefmat}{
#'     The coefficient matrix, if the system of differential equations can be
#'     represented by one.
#'   }
#'   \item{cf}{
#'     If generated, the compiled function as returned by cfunction.
#'   }
#' @note The IORE submodel is not well tested for metabolites. When using this
#'   model for metabolites, you may want to read the second note in the help
#'   page to \code{\link{mkinfit}}.
#' @author Johannes Ranke
#' @references FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence
#'   and Degradation Kinetics from Environmental Fate Studies on Pesticides in
#'   EU Registration} Report of the FOCUS Work Group on Degradation Kinetics,
#'   EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,
#'   \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
#'
#'   NAFTA Technical Working Group on Pesticides (not dated) Guidance for
#'   Evaluating and Calculating Degradation Kinetics in Environmental Media
#' @examples
#'
#' # Specify the SFO model (this is not needed any more, as we can now mkinfit("SFO", ...)
#' SFO <- mkinmod(parent = list(type = "SFO"))
#'
#' # One parent compound, one metabolite, both single first order
#' SFO_SFO <- mkinmod(
#'   parent = mkinsub("SFO", "m1"),
#'   m1 = mkinsub("SFO"))
#'
#' \dontrun{
#' # The above model used to be specified like this, before the advent of mkinsub()
#' SFO_SFO <- mkinmod(
#'   parent = list(type = "SFO", to = "m1"),
#'   m1 = list(type = "SFO"))
#'
#' # Show details of creating the C function
#' SFO_SFO <- mkinmod(
#'   parent = mkinsub("SFO", "m1"),
#'   m1 = mkinsub("SFO"), verbose = TRUE)
#'
#' # If we have several parallel metabolites
#' # (compare tests/testthat/test_synthetic_data_for_UBA_2014.R)
#' m_synth_DFOP_par <- mkinmod(parent = mkinsub("DFOP", c("M1", "M2")),
#'                            M1 = mkinsub("SFO"),
#'                            M2 = mkinsub("SFO"),
#'                            use_of_ff = "max", quiet = TRUE)
#'
#' fit_DFOP_par_c <- mkinfit(m_synth_DFOP_par,
#'                           synthetic_data_for_UBA_2014[[12]]$data,
#'                           quiet = TRUE)
#' }
#'
#' @export mkinmod
mkinmod <- function(..., use_of_ff = "min", speclist = NULL, quiet = FALSE, verbose = FALSE)
{
  if (is.null(speclist)) spec <- list(...)
  else spec <- speclist
  obs_vars <- names(spec)

  # Check if any of the names of the observed variables contains any other
  for (obs_var in obs_vars) {
    if (length(grep(obs_var, obs_vars)) > 1) stop("Sorry, variable names can not contain each other")
    if (grepl("_to_", obs_var)) stop("Sorry, names of observed variables can not contain _to_")
    if (obs_var == "sink") stop("Naming a compound 'sink' is not supported")
  }

  if (!use_of_ff %in% c("min", "max"))
    stop("The use of formation fractions 'use_of_ff' can only be 'min' or 'max'")

  # The returned model will be a list of character vectors, containing {{{
  # differential equations (if supported), parameter names and a mapping from
  # model variables to observed variables. If possible, a matrix representation
  # of the differential equations is included
  # Compiling the functions from the C code generated below only works if the
  # implicit assumption about differential equations specified below
  # is satisfied
  parms <- vector()
  # }}}

  # Do not return a coefficient matrix mat when FOMC, IORE, DFOP, HS or logistic is used for the parent {{{
  if(spec[[1]]$type %in% c("FOMC", "IORE", "DFOP", "HS", "logistic")) {
    mat = FALSE
  } else mat = TRUE
  #}}}

  # Establish a list of differential equations as well as a map from observed {{{
  # compartments to differential equations
  diffs <- vector()
  map <- list()
  for (varname in obs_vars)
  {
    # Check the type component of the compartment specification {{{
    if(is.null(spec[[varname]]$type)) stop(
      "Every part of the model specification must be a list containing a type component")
    if(!spec[[varname]]$type %in% c("SFO", "FOMC", "IORE", "DFOP", "HS", "SFORB", "logistic")) stop(
      "Available types are SFO, FOMC, IORE, DFOP, HS, SFORB and logistic only")
    if(spec[[varname]]$type %in% c("FOMC", "DFOP", "HS", "logistic") & match(varname, obs_vars) != 1) {
        stop(paste("Types FOMC, DFOP, HS and logistic are only implemented for the first compartment,",
                   "which is assumed to be the source compartment"))
    }
    #}}}
    # New (sub)compartments (boxes) needed for the model type {{{
    new_boxes <- switch(spec[[varname]]$type,
      SFO = varname,
      FOMC = varname,
      IORE = varname,
      DFOP = varname,
      HS = varname,
      logistic = varname,
      SFORB = paste(varname, c("free", "bound"), sep = "_")
    )
    map[[varname]] <- new_boxes
    names(map[[varname]]) <- rep(spec[[varname]]$type, length(new_boxes)) #}}}
    # Start a new differential equation for each new box {{{
    new_diffs <- paste("d_", new_boxes, " =", sep = "")
    names(new_diffs) <- new_boxes
    diffs <- c(diffs, new_diffs) #}}}
  } #}}}

  # Create content of differential equations and build parameter list {{{
  for (varname in obs_vars)
  {
    # Get the name of the box(es) we are working on for the decline term(s)
    box_1 = map[[varname]][[1]] # This is the only box unless type is SFORB
    # Turn on sink if this is not explicitly excluded by the user by
    # specifying sink=FALSE
    if(is.null(spec[[varname]]$sink)) spec[[varname]]$sink <- TRUE
    if(spec[[varname]]$type %in% c("SFO", "IORE", "SFORB")) { # {{{ Add decline term
      if (use_of_ff == "min") { # Minimum use of formation fractions
        if(spec[[varname]]$type == "IORE" && length(spec[[varname]]$to) > 0) {
           stop("Transformation reactions from compounds modelled with IORE\n",
                "are only supported with formation fractions (use_of_ff = 'max')")
        }
        if(spec[[varname]]$sink) {
          # If sink is requested, add first-order/IORE sink term
          k_compound_sink <- paste("k", box_1, "sink", sep = "_")
          if(spec[[varname]]$type == "IORE") {
            k_compound_sink <- paste("k__iore", box_1, "sink", sep = "_")
          }
          parms <- c(parms, k_compound_sink)
          decline_term <- paste(k_compound_sink, "*", box_1)
          if(spec[[varname]]$type == "IORE") {
            N <- paste("N", box_1, sep = "_")
            parms <- c(parms, N)
            decline_term <- paste0(decline_term, "^", N)
          }
        } else { # otherwise no decline term needed here
          decline_term = "0"
        }
      } else { # Maximum use of formation fractions
        k_compound <- paste("k", box_1, sep = "_")
        if(spec[[varname]]$type == "IORE") {
          k_compound <- paste("k__iore", box_1, sep = "_")
        }
        parms <- c(parms, k_compound)
        decline_term <- paste(k_compound, "*", box_1)
        if(spec[[varname]]$type == "IORE") {
          N <- paste("N", box_1, sep = "_")
          parms <- c(parms, N)
          decline_term <- paste0(decline_term, "^", N)
        }
      }
    } #}}}
    if(spec[[varname]]$type == "FOMC") { # {{{ Add FOMC decline term
      # From p. 53 of the FOCUS kinetics report, without the power function so it works in C
      decline_term <- paste("(alpha/beta) * 1/((time/beta) + 1) *", box_1)
      parms <- c(parms, "alpha", "beta")
    } #}}}
    if(spec[[varname]]$type == "DFOP") { # {{{ Add DFOP decline term
      # From p. 57 of the FOCUS kinetics report
      decline_term <- paste("((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time))) *", box_1)
      parms <- c(parms, "k1", "k2", "g")
    } #}}}
    HS_decline <- "ifelse(time <= tb, k1, k2)" # Used below for automatic translation to C
    if(spec[[varname]]$type == "HS") { # {{{ Add HS decline term
      # From p. 55 of the FOCUS kinetics report
      decline_term <- paste(HS_decline, "*", box_1)
      parms <- c(parms, "k1", "k2", "tb")
    } #}}}
    if(spec[[varname]]$type == "logistic") { # {{{ Add logistic decline term
      # From p. 67 of the FOCUS kinetics report (2014)
      decline_term <- paste("(k0 * kmax)/(k0 + (kmax - k0) * exp(-r * time)) *", box_1)
      parms <- c(parms, "kmax", "k0", "r")
    } #}}}
    # Add origin decline term to box 1 (usually the only box, unless type is SFORB)#{{{
    diffs[[box_1]] <- paste(diffs[[box_1]], "-", decline_term)#}}}
    if(spec[[varname]]$type == "SFORB") { # {{{ Add SFORB reversible binding terms
      box_2 = map[[varname]][[2]]
      k_free_bound <- paste("k", varname, "free", "bound", sep = "_")
      k_bound_free <- paste("k", varname, "bound", "free", sep = "_")
      parms <- c(parms, k_free_bound, k_bound_free)
      reversible_binding_term_1 <- paste("-", k_free_bound, "*", box_1, "+",
        k_bound_free, "*", box_2)
      reversible_binding_term_2 <- paste("+", k_free_bound, "*", box_1, "-",
        k_bound_free, "*", box_2)
      diffs[[box_1]] <- paste(diffs[[box_1]], reversible_binding_term_1)
      diffs[[box_2]] <- paste(diffs[[box_2]], reversible_binding_term_2)
    } #}}}

    # Transfer between compartments#{{{
    to <- spec[[varname]]$to
    if(!is.null(to)) {
      # Name of box from which transfer takes place
      origin_box <- box_1

      # Number of targets
      n_targets = length(to)

      # Add transfer terms to listed compartments
      for (target in to) {
        if (!target %in% obs_vars) stop("You did not specify a submodel for target variable ", target)
        target_box <- switch(spec[[target]]$type,
          SFO = target,
          IORE = target,
          SFORB = paste(target, "free", sep = "_"))
        if (use_of_ff == "min" && spec[[varname]]$type %in% c("SFO", "SFORB"))
        {
          k_from_to <- paste("k", origin_box, target_box, sep = "_")
          parms <- c(parms, k_from_to)
          diffs[[origin_box]] <- paste(diffs[[origin_box]], "-",
            k_from_to, "*", origin_box)
          diffs[[target_box]] <- paste(diffs[[target_box]], "+",
            k_from_to, "*", origin_box)
        } else {
          # Do not introduce a formation fraction if this is the only target
          if (spec[[varname]]$sink == FALSE && n_targets == 1) {
            diffs[[target_box]] <- paste(diffs[[target_box]], "+",
                                         decline_term)
          } else {
            fraction_to_target = paste("f", origin_box, "to", target, sep = "_")
            parms <- c(parms, fraction_to_target)
            diffs[[target_box]] <- paste(diffs[[target_box]], "+",
                fraction_to_target, "*", decline_term)
          }
        }
      }
    } #}}}
  } #}}}

  model <- list(diffs = diffs, parms = parms, map = map, spec = spec, use_of_ff = use_of_ff)

  # Create coefficient matrix if possible #{{{
  if (mat) {
    boxes <- names(diffs)
    n <- length(boxes)
    m <- matrix(nrow=n, ncol=n, dimnames=list(boxes, boxes))

    if (use_of_ff == "min") { # {{{ Minimum use of formation fractions
      for (from in boxes) {
        for (to in boxes) {
          if (from == to) { # diagonal elements
            k.candidate = paste("k", from, c(boxes, "sink"), sep = "_")
            k.candidate = sub("free.*bound", "free_bound", k.candidate)
            k.candidate = sub("bound.*free", "bound_free", k.candidate)
            k.effective = intersect(model$parms, k.candidate)
            m[from,to] = ifelse(length(k.effective) > 0,
                paste("-", k.effective, collapse = " "), "0")

          } else {          # off-diagonal elements
            k.candidate = paste("k", from, to, sep = "_")
            if (sub("_free$", "", from) == sub("_bound$", "", to)) {
              k.candidate = paste("k", sub("_free$", "_free_bound", from), sep = "_")
            }
            if (sub("_bound$", "", from) == sub("_free$", "", to)) {
              k.candidate = paste("k", sub("_bound$", "_bound_free", from), sep = "_")
            }
            k.effective = intersect(model$parms, k.candidate)
            m[to, from] = ifelse(length(k.effective) > 0,
                k.effective, "0")
          }
        }
      } # }}}
    } else { # {{{ Use formation fractions where possible
      for (from in boxes) {
        for (to in boxes) {
          if (from == to) { # diagonal elements
            k.candidate = paste("k", from, sep = "_")
            m[from,to] = ifelse(k.candidate %in% model$parms,
                paste("-", k.candidate), "0")
            if(grepl("_free", from)) { # add transfer to bound compartment for SFORB
              m[from,to] = paste(m[from,to], "-", paste("k", from, "bound", sep = "_"))
            }
            if(grepl("_bound", from)) { # add backtransfer to free compartment for SFORB
              m[from,to] = paste("- k", from, "free", sep = "_")
            }
            m[from,to] = m[from,to]
          } else {          # off-diagonal elements
            f.candidate = paste("f", from, "to", to, sep = "_")
            k.candidate = paste("k", from, to, sep = "_")
            k.candidate = sub("free.*bound", "free_bound", k.candidate)
            k.candidate = sub("bound.*free", "bound_free", k.candidate)
            m[to, from] = ifelse(f.candidate %in% model$parms,
              paste(f.candidate, " * k_", from, sep = ""),
              ifelse(k.candidate %in% model$parms, k.candidate, "0"))
            # Special case: singular pathway and no sink
            if (spec[[from]]$sink == FALSE && length(spec[[from]]$to) == 1 && to %in% spec[[from]]$to) {
              m[to, from] = paste("k", from, sep = "_")
            }
          }
        }
      }
    } # }}}
    model$coefmat <- m
  }#}}}

  # Try to create a function compiled from C code if there is more than one observed variable {{{
  # and a compiler is available
  if (length(obs_vars) > 1 & has_compiler()) {

    # Translate the R code for the derivatives to C code
    diffs.C <- paste(diffs, collapse = ";\n")
    diffs.C <- paste0(diffs.C, ";")

    # HS
    diffs.C <- gsub(HS_decline, "(time <= tb ? k1 : k2)", diffs.C, fixed = TRUE)

    for (i in seq_along(diffs)) {
      state_var <- names(diffs)[i]

      # IORE
      if (state_var %in% obs_vars) {
        if (spec[[state_var]]$type == "IORE") {
          diffs.C <- gsub(paste0(state_var, "^N_", state_var),
                          paste0("pow(y[", i - 1, "], N_", state_var, ")"),
                          diffs.C, fixed = TRUE)
        }
      }

      # Replace d_... terms by f[i-1]
      # First line
      pattern <- paste0("^d_", state_var)
      replacement <- paste0("\nf[", i - 1, "]")
      diffs.C <- gsub(pattern, replacement, diffs.C)
      # Other lines
      pattern <- paste0("\\nd_", state_var)
      replacement <- paste0("\nf[", i - 1, "]")
      diffs.C <- gsub(pattern, replacement, diffs.C)

      # Replace names of observed variables by y[i],
      # making the implicit assumption that the observed variables only occur after "* "
      pattern <- paste0("\\* ", state_var)
      replacement <- paste0("* y[", i - 1, "]")
      diffs.C <- gsub(pattern, replacement, diffs.C)
    }

    derivs_sig <- signature(n = "integer", t = "numeric", y = "numeric",
                            f = "numeric", rpar = "numeric", ipar = "integer")

    # Declare the time variable in the body of the function if it is used
    derivs_code <- if (spec[[1]]$type %in% c("FOMC", "DFOP", "HS")) {
      paste0("double time = *t;\n", diffs.C)
    } else {
      diffs.C
    }

    # Define the function initializing the parameters
    npar <- length(parms)
    initpar_code <- paste0(
      "static double parms [", npar, "];\n",
      paste0("#define ", parms, " parms[", 0:(npar - 1), "]\n", collapse = ""),
      "\n",
      "void initpar(void (* odeparms)(int *, double *)) {\n",
      "    int N = ", npar, ";\n",
      "    odeparms(&N, parms);\n",
      "}\n\n")

    # Try to build a shared library
    cf <- try(cfunction(list(func = derivs_sig), derivs_code,
                        otherdefs = initpar_code,
                        verbose = verbose,
                        convention = ".C", language = "C"),
              silent = TRUE)

    if (!inherits(cf, "try-error")) {
      if (!quiet) message("Successfully compiled differential equation model from auto-generated C code.")
      model$cf <- cf
    }
  }
  # }}}

  class(model) <- "mkinmod"
  return(model)
}

#' Print mkinmod objects
#'
#' Print mkinmod objects in a way that the user finds his way to get to its
#' components.
#'
#' @param x An \code{\link{mkinmod}} object.
#' @param \dots Not used.
#' @examples
#'
#'   m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"),
#'                              M1 = list(type = "SFO", to = "M2"),
#'                              M2 = list(type = "SFO"), use_of_ff = "max")
#'
#'   print(m_synth_SFO_lin)
#'
#' @export
print.mkinmod <- function(x, ...) {
  cat("<mkinmod> model generated with\n")
  cat("Use of formation fractions $use_of_ff:", x$use_of_ff, "\n")
  cat("Specification $spec:\n")
  for (obs in names(x$spec)) {
    cat("$", obs, "\n", sep = "")
    spl <- x$spec[[obs]]
    cat("$type:", spl$type)
    if (!is.null(spl$to) && length(spl$to)) cat("; $to: ", paste(spl$to, collapse = ", "), sep = "")
    cat("; $sink: ", spl$sink, sep = "")
    if (!is.null(spl$full_name)) if (!is.na(spl$full_name)) cat("; $full_name:", spl$full_name)
    cat("\n")
  }
  if (is.matrix(x$coefmat)) cat("Coefficient matrix $coefmat available\n")
  if (!is.null(x$cf)) cat("Compiled model $cf available\n")
  cat("Differential equations:\n")
  nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]])
  writeLines(strwrap(nice_diffs, exdent = 11))
}
# vim: set foldmethod=marker ts=2 sw=2 expandtab:

Contact - Imprint