1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
#' Fit one or more kinetic models with one or more state variables to one or
#' more datasets
#'
#' This function calls \code{\link{mkinfit}} on all combinations of models and
#' datasets specified in its first two arguments.
#'
#' @param models Either a character vector of shorthand names like
#' \code{c("SFO", "FOMC", "DFOP", "HS", "SFORB")}, or an optionally named
#' list of \code{\link{mkinmod}} objects.
#' @param datasets An optionally named list of datasets suitable as observed
#' data for \code{\link{mkinfit}}.
#' @param cores The number of cores to be used for multicore processing. This
#' is only used when the \code{cluster} argument is \code{NULL}. On Windows
#' machines, cores > 1 is not supported, you need to use the \code{cluster}
#' argument to use multiple logical processors. Per default, all cores
#' detected by [parallel::detectCores()] are used.
#' @param cluster A cluster as returned by \code{\link{makeCluster}} to be used
#' for parallel execution.
#' @param \dots Further arguments that will be passed to \code{\link{mkinfit}}.
#' @importFrom parallel mclapply parLapply detectCores
#' @return A two-dimensional \code{\link{array}} of \code{\link{mkinfit}}
#' objects and/or try-errors that can be indexed using the model names for the
#' first index (row index) and the dataset names for the second index (column
#' index).
#' @author Johannes Ranke
#' @seealso \code{\link{[.mmkin}} for subsetting, \code{\link{plot.mmkin}} for
#' plotting.
#' @keywords optimize
#' @examples
#'
#' \dontrun{
#' m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"),
#' M1 = mkinsub("SFO", "M2"),
#' M2 = mkinsub("SFO"), use_of_ff = "max")
#'
#' m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"),
#' M1 = mkinsub("SFO", "M2"),
#' M2 = mkinsub("SFO"), use_of_ff = "max")
#'
#' models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin)
#' datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data)
#' names(datasets) <- paste("Dataset", 1:3)
#'
#' time_default <- system.time(fits.0 <- mmkin(models, datasets, quiet = TRUE))
#' time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE))
#'
#' time_default
#' time_1
#'
#' endpoints(fits.0[["SFO_lin", 2]])
#'
#' # plot.mkinfit handles rows or columns of mmkin result objects
#' plot(fits.0[1, ])
#' plot(fits.0[1, ], obs_var = c("M1", "M2"))
#' plot(fits.0[, 1])
#' # Use double brackets to extract a single mkinfit object, which will be plotted
#' # by plot.mkinfit and can be plotted using plot_sep
#' plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE)
#' plot_sep(fits.0[[1, 1]])
#' # Plotting with mmkin (single brackets, extracting an mmkin object) does not
#' # allow to plot the observed variables separately
#' plot(fits.0[1, 1])
#' }
#'
#' @export mmkin
mmkin <- function(models = c("SFO", "FOMC", "DFOP"), datasets,
cores = parallel::detectCores(), cluster = NULL, ...)
{
call <- match.call()
parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE", "logistic")
n.m <- length(models)
n.d <- length(datasets)
n.fits <- n.m * n.d
fit_indices <- matrix(1:n.fits, ncol = n.d)
# Check models and define their names
if (!all(sapply(models, function(x) inherits(x, "mkinmod")))) {
if (!all(models %in% parent_models_available)) {
stop("Please supply models as a list of mkinmod objects or a vector combined of\n ",
paste(parent_models_available, collapse = ", "))
} else {
names(models) <- models
}
} else {
if (is.null(names(models))) names(models) <- as.character(1:n.m)
}
# Check datasets and define their names
if (is.null(names(datasets))) names(datasets) <- as.character(1:n.d)
# Define names for fit index
dimnames(fit_indices) <- list(model = names(models),
dataset = names(datasets))
fit_function <- function(fit_index) {
w <- which(fit_indices == fit_index, arr.ind = TRUE)
model_index <- w[1]
dataset_index <- w[2]
res <- try(mkinfit(models[[model_index]], datasets[[dataset_index]], ...))
if (!inherits(res, "try-error")) res$mkinmod$name <- names(models)[model_index]
return(res)
}
if (is.null(cluster)) {
results <- parallel::mclapply(as.list(1:n.fits), fit_function,
mc.cores = cores, mc.preschedule = FALSE)
} else {
results <- parallel::parLapply(cluster, as.list(1:n.fits), fit_function)
}
attributes(results) <- attributes(fit_indices)
attr(results, "call") <- call
class(results) <- "mmkin"
return(results)
}
#' Subsetting method for mmkin objects
#'
#' @param x An \code{\link{mmkin} object}
#' @param i Row index selecting the fits for specific models
#' @param j Column index selecting the fits to specific datasets
#' @param ... Not used, only there to satisfy the generic method definition
#' @param drop If FALSE, the method always returns an mmkin object, otherwise
#' either a list of mkinfit objects or a single mkinfit object.
#' @return An object of class \code{\link{mmkin}}.
#' @author Johannes Ranke
#' @rdname Extract.mmkin
#' @examples
#'
#' # Only use one core, to pass R CMD check --as-cran
#' fits <- mmkin(c("SFO", "FOMC"), list(B = FOCUS_2006_B, C = FOCUS_2006_C),
#' cores = 1, quiet = TRUE)
#' fits["FOMC", ]
#' fits[, "B"]
#' fits["SFO", "B"]
#'
#' head(
#' # This extracts an mkinfit object with lots of components
#' fits[["FOMC", "B"]]
#' )
#' @export
`[.mmkin` <- function(x, i, j, ..., drop = FALSE) {
class(x) <- NULL
x_sub <- x[i, j, drop = drop]
if (!drop) class(x_sub) <- "mmkin"
return(x_sub)
}
#' Print method for mmkin objects
#'
#' @param x An [mmkin] object.
#' @param \dots Not used.
#' @export
print.mmkin <- function(x, ...) {
cat("<mmkin> object\n")
cat("Status of individual fits:\n\n")
all_summary_warnings <- character()
sww <- 0 # Counter for Shapiro-Wilks warnings
display <- lapply(x,
function(fit) {
if (inherits(fit, "try-error")) return("E")
sw <- fit$summary_warnings
swn <- names(sw)
if (length(sw) > 0) {
if (any(grepl("S", swn))) {
sww <<- sww + 1
swn <- gsub("S", paste0("S", sww), swn)
}
warnstring <- paste(swn, collapse = ", ")
names(sw) <- swn
all_summary_warnings <<- c(all_summary_warnings, sw)
return(warnstring)
} else {
return("OK")
}
})
display <- unlist(display)
dim(display) <- dim(x)
dimnames(display) <- dimnames(x)
print(display, quote = FALSE)
cat("\n")
if (any(display == "OK")) cat("OK: No warnings\n")
if (any(display == "E")) cat("E: Error\n")
u_swn <- unique(names(all_summary_warnings))
u_w <- all_summary_warnings[u_swn]
for (i in seq_along(u_w)) {
cat(names(u_w)[i], ": ", u_w[i], "\n", sep = "")
}
}
#' @export
update.mmkin <- function(object, ..., evaluate = TRUE)
{
call <- attr(object, "call")
update_arguments <- match.call(expand.dots = FALSE)$...
if (length(update_arguments) > 0) {
update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
}
for (a in names(update_arguments)[update_arguments_in_call]) {
call[[a]] <- update_arguments[[a]]
}
update_arguments_not_in_call <- !update_arguments_in_call
if(any(update_arguments_not_in_call)) {
call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
call <- as.call(call)
}
if(evaluate) eval(call, parent.frame())
else call
}
|