aboutsummaryrefslogtreecommitdiff
path: root/R/multistart.R
blob: 29ccdc447df93ddb6599bab0d9cc539342033bab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#' Perform a hierarchical model fit with multiple starting values
#'
#' The purpose of this method is to check if a certain algorithm for fitting
#' nonlinear hierarchical models (also known as nonlinear mixed-effects models)
#' will reliably yield results that are sufficiently similar to each other, if
#' started with a certain range of reasonable starting parameters. It is
#' inspired by the article on practical identifiabiliy in the frame of nonlinear
#' mixed-effects models by Duchesne et al (2021).
#'
#' @param object The fit object to work with
#' @param n How many different combinations of starting parameters should be
#' used?
#' @param cores How many fits should be run in parallel (only on posix platforms)?
#' @param cluster A cluster as returned by [parallel::makeCluster] to be used
#' for parallel execution.
#' @param \dots Passed to the update function.
#' @param x The multistart object to print
#' @return A list of [saem.mmkin] objects, with class attributes
#' 'multistart.saem.mmkin' and 'multistart'.
#' @seealso [parhist], [llhist]
#'
#' @references Duchesne R, Guillemin A, Gandrillon O, Crauste F. Practical
#' identifiability in the frame of nonlinear mixed effects models: the example
#' of the in vitro erythropoiesis. BMC Bioinformatics. 2021 Oct 4;22(1):478.
#' doi: 10.1186/s12859-021-04373-4.
#' @export
#' @examples
#' \dontrun{
#' library(mkin)
#' dmta_ds <- lapply(1:7, function(i) {
#'   ds_i <- dimethenamid_2018$ds[[i]]$data
#'   ds_i[ds_i$name == "DMTAP", "name"] <-  "DMTA"
#'   ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
#'   ds_i
#' })
#' names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
#' dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
#' dmta_ds[["Elliot 1"]] <- dmta_ds[["Elliot 2"]] <- NULL
#'
#' f_mmkin <- mmkin("DFOP", dmta_ds, error_model = "tc", cores = 7, quiet = TRUE)
#' f_saem_full <- saem(f_mmkin)
#' f_saem_full_multi <- multistart(f_saem_full, n = 16, cores = 16)
#' parhist(f_saem_full_multi, lpos = "bottomleft")
#' illparms(f_saem_full)
#'
#' f_saem_reduced <- update(f_saem_full, no_random_effect = "log_k2")
#' illparms(f_saem_reduced)
#' # On Windows, we need to create a cluster first. When working with
#' # such a cluster, we need to export the mmkin object to the cluster
#' # nodes, as it is referred to when updating the saem object on the nodes.
#' library(parallel)
#' cl <- makePSOCKcluster(12)
#' clusterExport(cl, "f_mmkin")
#' f_saem_reduced_multi <- multistart(f_saem_reduced, n = 16, cluster = cl)
#' parhist(f_saem_reduced_multi, lpos = "topright")
#' }
multistart <- function(object, n = 50,
  cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
  cluster = NULL, ...)
{
  UseMethod("multistart", object)
}

#' @rdname multistart
#' @export
multistart.saem.mmkin <- function(object, n = 50, cores = 1,
  cluster = NULL, ...) {
  call <- match.call()
  if (n <= 1) stop("Please specify an n of at least 2")

  mmkin_object <- object$mmkin

  mmkin_parms <- parms(mmkin_object, errparms = FALSE,
    transformed = object$transformations == "mkin")
  start_parms <- apply(
    mmkin_parms, 1,
    function(x) stats::runif(n, min(x), max(x)))

  saem_call <- object$call
  saem_call[[1]] <- saem
  saem_call[[2]] <- mmkin_object
  i_startparms <- which(names(saem_call) == "degparms_start")

  fit_function <- function(x) {

    new_startparms <- str2lang(
      paste0(capture.output(dput(start_parms[x, ])),
        collapse = ""))

    if (length(i_startparms) == 0) {
      saem_call <- c(as.list(saem_call), degparms_start = new_startparms)
      saem_call <- as.call(saem_call)
    } else {
      saem_call[i_startparms] <- new_startparms
    }

    ret <- eval(saem_call)

    return(ret)
  }

  if (is.null(cluster)) {
    res <- parallel::mclapply(1:n, fit_function, mc.cores = cores)
  } else {
    res <- parallel::parLapply(cluster, 1:n, fit_function)
  }
  attr(res, "orig") <- object
  attr(res, "start_parms") <- start_parms
  attr(res, "call") <- call
  class(res) <- c("multistart.saem.mmkin", "multistart")
  return(res)
}

#' @export
status.multistart <- function(object, ...) {
  all_summary_warnings <- character()

  result <- lapply(object,
    function(fit) {
      if (inherits(fit, "try-error")) return("E")
      else {
        return("OK")
      }
  })
  result <- unlist(result)

  class(result) <- "status.multistart"
  return(result)
}

#' @export
status.multistart.saem.mmkin <- function(object, ...) {
  all_summary_warnings <- character()

  result <- lapply(object,
    function(fit) {
      if (inherits(fit$so, "try-error")) return("E")
      else {
        return("OK")
      }
  })
  result <- unlist(result)

  class(result) <- "status.multistart"
  return(result)
}

#' @export
print.status.multistart <- function(x, ...) {
  class(x) <- NULL
  print(table(x, dnn = NULL))
  if (any(x == "OK")) cat("OK: Fit terminated successfully\n")
  if (any(x == "E")) cat("E: Error\n")
}

#' @rdname multistart
#' @export
print.multistart <- function(x, ...) {
  cat("<multistart> object with", length(x), "fits:\n")
  print(status(x))
}

#' @rdname multistart
#' @export
best <- function(object, ...)
{
  UseMethod("best", object)
}

#' @export
#' @return The object with the highest likelihood
#' @rdname multistart
best.default <- function(object, ...)
{
  return(object[[which.best(object)]])
}

#' @return The index of the object with the highest likelihood
#' @rdname multistart
#' @export
which.best <- function(object, ...)
{
  UseMethod("which.best", object)
}

#' @rdname multistart
#' @export
which.best.default <- function(object, ...)
{
  llfunc <- function(object) {
    ret <- try(logLik(object))
    if (inherits(ret, "try-error")) return(NA)
    else return(ret)
  }
  ll <- sapply(object, llfunc)
  return(which.max(ll))
}

#' @export
update.multistart <- function(object, ..., evaluate = TRUE) {
  call <- attr(object, "call")
  # For some reason we get multistart.saem.mmkin in call[[1]] when using multistart
  # from the loaded package so we need to fix this so we do not have to export
  # multistart.saem.mmkin
  call[[1]] <- multistart

  update_arguments <- match.call(expand.dots = FALSE)$...

  if (length(update_arguments) > 0) {
    update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
  }

  for (a in names(update_arguments)[update_arguments_in_call]) {
    call[[a]] <- update_arguments[[a]]
  }

  update_arguments_not_in_call <- !update_arguments_in_call
  if(any(update_arguments_not_in_call)) {
    call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
    call <- as.call(call)
  }
  if(evaluate) eval(call, parent.frame())
  else call
}

Contact - Imprint