1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
#' Estimation of parameter distributions from mmkin row objects
#'
#' These functions facilitate setting up a nonlinear mixed effects model for
#' an mmkin row object. An mmkin row object is essentially a list of mkinfit
#' objects that have been obtained by fitting the same model to a list of
#' datasets.
#'
#' @param object An mmkin row object containing several fits of the same model to different datasets
#' @import nlme
#' @rdname nlme
#' @examples
#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
#' m_SFO <- mkinmod(parent = mkinsub("SFO"))
#' d_SFO_1 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.1),
#' c(parent = 98), sampling_times)
#' d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time")
#' d_SFO_2 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.05),
#' c(parent = 102), sampling_times)
#' d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time")
#' d_SFO_3 <- mkinpredict(m_SFO,
#' c(k_parent_sink = 0.02),
#' c(parent = 103), sampling_times)
#' d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time")
#'
#' d1 <- add_err(d_SFO_1, function(value) 3, n = 1)
#' d2 <- add_err(d_SFO_2, function(value) 2, n = 1)
#' d3 <- add_err(d_SFO_3, function(value) 4, n = 1)
#' ds <- c(d1 = d1, d2 = d2, d3 = d3)
#'
#' f <- mmkin("SFO", ds, cores = 1, quiet = TRUE)
#' mean_dp <- mean_degparms(f)
#' grouped_data <- nlme_data(f)
#' nlme_f <- nlme_function(f)
#'
#' library(nlme)
#' m_nlme <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink),
#' data = grouped_data,
#' fixed = parent_0 + log_k_parent_sink ~ 1,
#' random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
#' start = mean_dp)
#' summary(m_nlme)
#'
#' \dontrun{
#' # Test on some real data
#' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) x$data[c("name", "time", "value")])
#' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"), use_of_ff = "min")
#' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"), use_of_ff = "max")
#' m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
#' A1 = mkinsub("SFO"))
#' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"))
#' m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"),
#' A1 = mkinsub("SFO"))
#'
#' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
#' "SFO-SFO-ff" = m_sfo_sfo_ff,
#' "FOMC-SFO" = m_fomc_sfo,
#' "DFOP-SFO" = m_dfop_sfo,
#' "SFORB-SFO" = m_sforb_sfo),
#' ds_2)
#'
#' grouped_data_2 <- nlme_data(f_2["SFO-SFO", ])
#'
#' mean_dp_sfo_sfo <- mean_degparms(f_2["SFO-SFO", ])
#' mean_dp_sfo_sfo_ff <- mean_degparms(f_2["SFO-SFO-ff", ])
#' mean_dp_fomc_sfo <- mean_degparms(f_2["FOMC-SFO", ])
#' mean_dp_dfop_sfo <- mean_degparms(f_2["DFOP-SFO", ])
#' mean_dp_sforb_sfo <- mean_degparms(f_2["SFORB-SFO", ])
#'
#' nlme_f_sfo_sfo <- nlme_function(f_2["SFO-SFO", ])
#' nlme_f_sfo_sfo_ff <- nlme_function(f_2["SFO-SFO-ff", ])
#' nlme_f_fomc_sfo <- nlme_function(f_2["FOMC-SFO", ])
#'
#' # Allowing for correlations between random effects leads to non-convergence
#' f_nlme_sfo_sfo <- nlme(value ~ nlme_f_sfo_sfo(name, time,
#' parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink),
#' data = grouped_data_2,
#' fixed = parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1,
#' random = pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1),
#' start = mean_dp_sfo_sfo)
#'
#' # The same model fitted with transformed formation fractions does not converge
#' f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time,
#' parent_0, log_k_parent, log_k_A1, f_parent_ilr_1),
#' data = grouped_data_2,
#' fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1,
#' random = pdDiag(parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1),
#' start = mean_dp_sfo_sfo_ff)
#'
#' # It does converge with this version of reduced random effects
#' f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time,
#' parent_0, log_k_parent, log_k_A1, f_parent_ilr_1),
#' data = grouped_data_2,
#' fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1,
#' random = pdDiag(parent_0 + log_k_parent ~ 1),
#' start = mean_dp_sfo_sfo_ff)
#'
#' f_nlme_fomc_sfo <- nlme(value ~ nlme_f_fomc_sfo(name, time,
#' parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1),
#' data = grouped_data_2,
#' fixed = parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1,
#' random = pdDiag(parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1),
#' start = mean_dp_fomc_sfo)
#'
#' # DFOP-SFO and SFORB-SFO did not converge with full random effects
#'
#' anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo)
#' }
#' @return A function that can be used with \code{link{nlme}}
#' @export
nlme_function <- function(object) {
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
degparm_names <- names(mean_degparms(object))
# Inspired by https://stackoverflow.com/a/12983961/3805440
# and https://stackoverflow.com/a/26280789/3805440
model_function_alist <- replicate(length(degparm_names) + 2, substitute())
names(model_function_alist) <- c("name", "time", degparm_names)
model_function_body <- quote({
arg_frame <- as.data.frame(as.list((environment())), stringsAsFactors = FALSE)
res_frame <- arg_frame[1:2]
parm_frame <- arg_frame[-(1:2)]
parms_unique <- unique(parm_frame)
n_unique <- nrow(parms_unique)
times_ds <- list()
names_ds <- list()
for (i in 1:n_unique) {
times_ds[[i]] <-
arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "time"]
names_ds[[i]] <-
arg_frame[which(arg_frame[[3]] == parms_unique[i, 1]), "name"]
}
res_list <- lapply(1:n_unique, function(x) {
transparms_optim <- unlist(parms_unique[x, , drop = TRUE])
parms_fixed <- object[[1]]$bparms.fixed
odeini_optim_parm_names <- grep('_0$', names(transparms_optim), value = TRUE)
odeini_optim <- transparms_optim[odeini_optim_parm_names]
names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names)
odeini_fixed_parm_names <- grep('_0$', names(parms_fixed), value = TRUE)
odeini_fixed <- parms_fixed[odeini_fixed_parm_names]
names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names)
odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions)
odeparms_fixed_names <- setdiff(names(parms_fixed), odeini_fixed_parm_names)
odeparms_fixed <- parms_fixed[odeparms_fixed_names]
odeparms <- c(odeparms_optim, odeparms_fixed)
out_wide <- mkinpredict(mkin_model,
odeparms = odeparms, odeini = odeini,
solution_type = object[[1]]$solution_type,
outtimes = sort(unique(times_ds[[x]])))
out_array <- out_wide[, -1, drop = FALSE]
rownames(out_array) <- as.character(unique(times_ds[[x]]))
out_times <- as.character(times_ds[[x]])
out_names <- as.character(names_ds[[x]])
out_values <- mapply(function(times, names) out_array[times, names],
out_times, out_names)
return(as.numeric(out_values))
})
res <- unlist(res_list)
return(res)
})
model_function <- as.function(c(model_function_alist, model_function_body))
return(model_function)
}
#' @rdname nlme
#' @return A named vector containing mean values of the fitted degradation model parameters
#' @export
mean_degparms <- function(object) {
if (nrow(object) > 1) stop("Only row objects allowed")
degparm_mat_trans <- sapply(object, parms, transformed = TRUE)
mean_degparm_names <- setdiff(rownames(degparm_mat_trans), names(object[[1]]$errparms))
res <- apply(degparm_mat_trans[mean_degparm_names, ], 1, mean)
return(res)
}
#' @rdname nlme
#' @importFrom purrr map_dfr
#' @return A \code{\link{groupedData}} object
#' @export
nlme_data <- function(object) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_nlme <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
ds_nlme$variable <- as.character(ds_nlme$variable)
ds_nlme_renamed <- data.frame(ds = ds_nlme$ds, name = ds_nlme$variable,
time = ds_nlme$time, value = ds_nlme$observed,
stringsAsFactors = FALSE)
ds_nlme_grouped <- groupedData(value ~ time | ds, ds_nlme_renamed)
return(ds_nlme_grouped)
}
|