1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
# Code inspired by nlme::nlme.nlsList and R/nlme_fit.R from nlmixr
# We need to assign the degradation function created in nlme.mmkin to an
# environment that is always accessible, also e.g. when evaluation is done by
# testthat or pkgdown. Therefore parent.frame() is not good enough. The
# following environment will be in the mkin namespace.
.nlme_env <- new.env(parent = emptyenv())
#' @export
nlme::nlme
#' Retrieve a degradation function from the mmkin namespace
#'
#' @importFrom utils getFromNamespace
#' @return A function that was likely previously assigned from within
#' nlme.mmkin
#' @export
get_deg_func <- function() {
return(get("deg_func", getFromNamespace(".nlme_env", "mkin")))
}
#' Create an nlme model for an mmkin row object
#'
#' This functions sets up a nonlinear mixed effects model for an mmkin row
#' object. An mmkin row object is essentially a list of mkinfit objects that
#' have been obtained by fitting the same model to a list of datasets.
#'
#' @param model An [mmkin] row object.
#' @param data Ignored, data are taken from the mmkin model
#' @param fixed Ignored, all degradation parameters fitted in the
#' mmkin model are used as fixed parameters
#' @param random If not specified, all fixed effects are complemented
#' with uncorrelated random effects
#' @param groups See the documentation of nlme
#' @param start If not specified, mean values of the fitted degradation
#' parameters taken from the mmkin object are used
#' @param correlation See the documentation of nlme
#' @param weights passed to nlme
#' @param subset passed to nlme
#' @param method passed to nlme
#' @param na.action passed to nlme
#' @param naPattern passed to nlme
#' @param control passed to nlme
#' @param verbose passed to nlme
#' @importFrom stats na.fail as.formula
#' @return Upon success, a fitted 'nlme.mmkin' object, which is an nlme object
#' with additional elements. It also inherits from 'mixed.mmkin'.
#' @note As the object inherits from [nlme::nlme], there is a wealth of
#' methods that will automatically work on 'nlme.mmkin' objects, such as
#' [nlme::intervals()], [nlme::anova.lme()] and [nlme::coef.lme()].
#' @export
#' @seealso [nlme_function()], [plot.mixed.mmkin], [summary.nlme.mmkin]
#' @examples
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")], name == "parent"))
#' f <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, cores = 1)
#' library(nlme)
#' f_nlme_sfo <- nlme(f["SFO", ])
#'
#' \dontrun{
#'
#' f_nlme_dfop <- nlme(f["DFOP", ])
#' anova(f_nlme_sfo, f_nlme_dfop)
#' print(f_nlme_dfop)
#' plot(f_nlme_dfop)
#' endpoints(f_nlme_dfop)
#'
#' ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) x$data[c("name", "time", "value")])
#' m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"), use_of_ff = "min", quiet = TRUE)
#' m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE)
#' m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"), quiet = TRUE)
#'
#' f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
#' "SFO-SFO-ff" = m_sfo_sfo_ff,
#' "DFOP-SFO" = m_dfop_sfo),
#' ds_2, quiet = TRUE)
#'
#' f_nlme_sfo_sfo <- nlme(f_2["SFO-SFO", ])
#' plot(f_nlme_sfo_sfo)
#'
#' # With formation fractions this does not coverge with defaults
#' # f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])
#' #plot(f_nlme_sfo_sfo_ff)
#'
#' # With the log-Cholesky parameterization, this converges in 11
#' # iterations and around 100 seconds, but without tweaking control
#' # parameters (with pdDiag, increasing the tolerance and pnlsMaxIter was
#' # necessary)
#' f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ])
#'
#' plot(f_nlme_dfop_sfo)
#'
#' anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo)
#'
#' endpoints(f_nlme_sfo_sfo)
#' endpoints(f_nlme_dfop_sfo)
#'
#' if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available
#' # Attempts to fit metabolite kinetics with the tc error model are possible,
#' # but need tweeking of control values and sometimes do not converge
#'
#' f_tc <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, error_model = "tc")
#' f_nlme_sfo_tc <- nlme(f_tc["SFO", ])
#' f_nlme_dfop_tc <- nlme(f_tc["DFOP", ])
#' AIC(f_nlme_sfo, f_nlme_sfo_tc, f_nlme_dfop, f_nlme_dfop_tc)
#' print(f_nlme_dfop_tc)
#' }
#'
#' f_2_obs <- mmkin(list("SFO-SFO" = m_sfo_sfo,
#' "DFOP-SFO" = m_dfop_sfo),
#' ds_2, quiet = TRUE, error_model = "obs")
#' f_nlme_sfo_sfo_obs <- nlme(f_2_obs["SFO-SFO", ])
#' print(f_nlme_sfo_sfo_obs)
#' f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ])
#'
#' f_2_tc <- mmkin(list("SFO-SFO" = m_sfo_sfo,
#' "DFOP-SFO" = m_dfop_sfo),
#' ds_2, quiet = TRUE, error_model = "tc")
#' # f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # stops with error message
#' f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ])
#' # We get warnings about false convergence in the LME step in several iterations
#' # but as the last such warning occurs in iteration 25 and we have 28 iterations
#' # we can ignore these
#' anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs, f_nlme_dfop_sfo_tc)
#'
#' }
nlme.mmkin <- function(model, data = sys.frame(sys.parent()),
fixed, random = fixed,
groups, start, correlation = NULL, weights = NULL,
subset, method = c("ML", "REML"),
na.action = na.fail, naPattern,
control = list(), verbose= FALSE)
{
if (nrow(model) > 1) stop("Only row objects allowed")
thisCall <- as.list(match.call())[-1]
# Warn in case arguments were used that are overriden
if (any(!is.na(match(names(thisCall),
c("fixed", "data"))))) {
warning("'nlme.mmkin' will redefine 'fixed' and 'data'")
}
deg_func <- nlme_function(model)
assign("deg_func", deg_func, getFromNamespace(".nlme_env", "mkin"))
# For the formula, get the degradation function from the mkin namespace
this_model_text <- paste0("value ~ mkin::get_deg_func()(",
paste(names(formals(deg_func)), collapse = ", "), ")")
this_model <- as.formula(this_model_text)
thisCall[["model"]] <- this_model
mean_dp_start <- mean_degparms(model)
dp_names <- names(mean_dp_start)
thisCall[["data"]] <- nlme_data(model)
if (missing(start)) {
thisCall[["start"]] <- mean_degparms(model, random = TRUE)
}
thisCall[["fixed"]] <- lapply(as.list(dp_names), function(el)
eval(parse(text = paste(el, 1, sep = "~"))))
if (missing(random)) {
thisCall[["random"]] <- pdLogChol(thisCall[["fixed"]])
}
error_model <- model[[1]]$err_mod
if (missing(weights)) {
thisCall[["weights"]] <- switch(error_model,
const = NULL,
obs = varIdent(form = ~ 1 | name),
tc = varConstProp())
sigma <- switch(error_model,
tc = 1,
NULL)
}
control <- thisCall[["control"]]
if (error_model == "tc") {
control$sigma = 1
thisCall[["control"]] <- control
}
fit_time <- system.time(val <- do.call("nlme.formula", thisCall))
val$time <- fit_time
val$mkinmod <- model[[1]]$mkinmod
val$data <- thisCall[["data"]]
val$mmkin <- model
val$mean_dp_start <- mean_dp_start
val$transform_rates <- model[[1]]$transform_rates
val$transform_fractions <- model[[1]]$transform_fractions
val$solution_type <- model[[1]]$solution_type
val$err_mode <- error_model
val$bparms.optim <- backtransform_odeparms(val$coefficients$fixed,
val$mkinmod,
transform_rates = val$transform_rates,
transform_fractions = val$transform_fractions)
val$bparms.fixed <- model[[1]]$bparms.fixed
val$date.fit <- date()
val$nlmeversion <- as.character(utils::packageVersion("nlme"))
val$mkinversion <- as.character(utils::packageVersion("mkin"))
val$Rversion <- paste(R.version$major, R.version$minor, sep=".")
class(val) <- c("nlme.mmkin", "mixed.mmkin", "nlme", "lme")
return(val)
}
#' @export
#' @rdname nlme.mmkin
#' @param x An nlme.mmkin object to print
#' @param digits Number of digits to use for printing
print.nlme.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat( "Kinetic nonlinear mixed-effects model fit by " )
cat( if(x$method == "REML") "REML\n" else "maximum likelihood\n")
cat("\nStructural model:\n")
diffs <- x$mmkin[[1]]$mkinmod$diffs
nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs)
writeLines(strwrap(nice_diffs, exdent = 11))
cat("\nData:\n")
cat(nrow(x$data), "observations of",
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
cat("\nLog-", if(x$method == "REML") "restricted-" else "",
"likelihood: ", format(x$logLik), "\n", sep = "")
fixF <- x$call$fixed
cat("\nFixed effects:\n",
deparse(
if(inherits(fixF, "formula") || is.call(fixF) || is.name(fixF))
x$call$fixed
else
lapply(fixF, function(el) as.name(deparse(el)))), "\n")
print(fixef(x), digits = digits, ...)
cat("\n")
print(summary(x$modelStruct), sigma = x$sigma, digits = digits, ...)
invisible(x)
}
#' @export
#' @rdname nlme.mmkin
#' @param object An nlme.mmkin object to update
#' @param ... Update specifications passed to update.nlme
update.nlme.mmkin <- function(object, ...) {
res <- NextMethod()
res$mmkin <- object$mmkin
class(res) <- c("nlme.mmkin", "nlme", "lme")
return(res)
}
|