1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
utils::globalVariables(c("predicted", "std", "ID", "TIME", "CMT", "DV", "IPRED", "IRES", "IWRES"))
#' @export
nlmixr::nlmixr
#' Fit nonlinear mixed models using nlmixr
#'
#' This function uses [nlmixr::nlmixr()] as a backend for fitting nonlinear mixed
#' effects models created from [mmkin] row objects using the Stochastic Approximation
#' Expectation Maximisation algorithm (SAEM).
#'
#' An mmkin row object is essentially a list of mkinfit objects that have been
#' obtained by fitting the same model to a list of datasets using [mkinfit].
#'
#' @importFrom nlmixr nlmixr tableControl
#' @importFrom dplyr %>%
#' @param object An [mmkin] row object containing several fits of the same
#' [mkinmod] model to different datasets
#' @param data Not used, the data are extracted from the mmkin row object
#' @param est Estimation method passed to [nlmixr::nlmixr]
#' @param degparms_start Parameter values given as a named numeric vector will
#' be used to override the starting values obtained from the 'mmkin' object.
#' @param eta_start Standard deviations on the transformed scale given as a
#' named numeric vector will be used to override the starting values obtained
#' from the 'mmkin' object.
#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
#' values for population parameters fitted as log parameters in mkin (like
#' rate constants) by only considering rate constants that pass the t-test
#' when calculating mean degradation parameters using [mean_degparms].
#' @param conf.level Possibility to adjust the required confidence level
#' for parameter that are tested if requested by 'test_log_parms'.
#' @param data Not used, as the data are extracted from the mmkin row object
#' @param table Passed to [nlmixr::nlmixr]
#' @param error_model Optional argument to override the error model which is
#' being set based on the error model used in the mmkin row object.
#' @param control Passed to [nlmixr::nlmixr]
#' @param \dots Passed to [nlmixr_model]
#' @param save Passed to [nlmixr::nlmixr]
#' @param envir Passed to [nlmixr::nlmixr]
#' @return An S3 object of class 'nlmixr.mmkin', containing the fitted
#' [nlmixr::nlmixr] object as a list component named 'nm'. The
#' object also inherits from 'mixed.mmkin'.
#' @seealso [summary.nlmixr.mmkin] [plot.mixed.mmkin]
#' @examples
#' \dontrun{
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
#'
#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
#' f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
#' cores = 1, quiet = TRUE)
#'
#' f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
#' f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei")
#'
#' f_nlmixr_fomc_saem <- nlmixr(f_mmkin_parent["FOMC", ], est = "saem")
#' f_nlmixr_fomc_focei <- nlmixr(f_mmkin_parent["FOMC", ], est = "focei")
#'
#' f_nlmixr_dfop_saem <- nlmixr(f_mmkin_parent["DFOP", ], est = "saem")
#' f_nlmixr_dfop_focei <- nlmixr(f_mmkin_parent["DFOP", ], est = "focei")
#'
#' f_nlmixr_hs_saem <- nlmixr(f_mmkin_parent["HS", ], est = "saem")
#' f_nlmixr_hs_focei <- nlmixr(f_mmkin_parent["HS", ], est = "focei")
#'
#' f_nlmixr_fomc_saem_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "saem")
#' f_nlmixr_fomc_focei_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "focei")
#'
#' AIC(
#' f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm,
#' f_nlmixr_fomc_saem$nm, f_nlmixr_fomc_focei$nm,
#' f_nlmixr_dfop_saem$nm, f_nlmixr_dfop_focei$nm,
#' f_nlmixr_hs_saem$nm, f_nlmixr_hs_focei$nm,
#' f_nlmixr_fomc_saem_tc$nm, f_nlmixr_fomc_focei_tc$nm)
#'
#' AIC(nlme(f_mmkin_parent["FOMC", ]))
#' AIC(nlme(f_mmkin_parent["HS", ]))
#'
#' # nlme is comparable to nlmixr with focei, saem finds a better
#' # solution, the two-component error model does not improve it
#' plot(f_nlmixr_fomc_saem)
#'
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
#' A1 = mkinsub("SFO"))
#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"))
#'
#' f_mmkin_const <- mmkin(list(
#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
#' ds, quiet = TRUE, error_model = "const")
#' f_mmkin_obs <- mmkin(list(
#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
#' ds, quiet = TRUE, error_model = "obs")
#' f_mmkin_tc <- mmkin(list(
#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
#' ds, quiet = TRUE, error_model = "tc")
#'
#' # A single constant variance is currently only possible with est = 'focei' in nlmixr
#' f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei")
#' f_nlmixr_fomc_sfo_focei_const <- nlmixr(f_mmkin_const["FOMC-SFO", ], est = "focei")
#' f_nlmixr_dfop_sfo_focei_const <- nlmixr(f_mmkin_const["DFOP-SFO", ], est = "focei")
#'
#' # Variance by variable is supported by 'saem' and 'focei'
#' f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
#' f_nlmixr_fomc_sfo_focei_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "focei")
#' f_nlmixr_dfop_sfo_saem_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "saem")
#' f_nlmixr_dfop_sfo_focei_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "focei")
#'
#' # Identical two-component error for all variables is only possible with
#' # est = 'focei' in nlmixr
#' f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
#' f_nlmixr_dfop_sfo_focei_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei")
#'
#' # Two-component error by variable is possible with both estimation methods
#' # Variance by variable is supported by 'saem' and 'focei'
#' f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
#' error_model = "obs_tc")
#' f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
#' error_model = "obs_tc")
#' f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
#' error_model = "obs_tc")
#' f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
#' error_model = "obs_tc")
#'
#' AIC(
#' f_nlmixr_sfo_sfo_focei_const$nm,
#' f_nlmixr_fomc_sfo_focei_const$nm,
#' f_nlmixr_dfop_sfo_focei_const$nm,
#' f_nlmixr_fomc_sfo_saem_obs$nm,
#' f_nlmixr_fomc_sfo_focei_obs$nm,
#' f_nlmixr_dfop_sfo_saem_obs$nm,
#' f_nlmixr_dfop_sfo_focei_obs$nm,
#' f_nlmixr_fomc_sfo_focei_tc$nm,
#' f_nlmixr_dfop_sfo_focei_tc$nm,
#' f_nlmixr_fomc_sfo_saem_obs_tc$nm,
#' f_nlmixr_fomc_sfo_focei_obs_tc$nm,
#' f_nlmixr_dfop_sfo_saem_obs_tc$nm,
#' f_nlmixr_dfop_sfo_focei_obs_tc$nm
#' )
#' # Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
#' # lowest AIC
#' plot(f_nlmixr_fomc_sfo_focei_obs_tc)
#' summary(f_nlmixr_fomc_sfo_focei_obs_tc)
#' }
#' @export
nlmixr.mmkin <- function(object, data = NULL,
est = NULL, control = list(),
table = tableControl(),
error_model = object[[1]]$err_mod,
test_log_parms = TRUE,
conf.level = 0.6,
degparms_start = "auto",
eta_start = "auto",
...,
save = NULL,
envir = parent.frame()
)
{
m_nlmixr <- nlmixr_model(object, est = est,
error_model = error_model, add_attributes = TRUE,
test_log_parms = test_log_parms, conf.level = conf.level,
degparms_start = degparms_start, eta_start = eta_start
)
d_nlmixr <- nlmixr_data(object)
mean_dp_start <- attr(m_nlmixr, "mean_dp_start")
mean_ep_start <- attr(m_nlmixr, "mean_ep_start")
attributes(m_nlmixr) <- NULL
fit_time <- system.time({
f_nlmixr <- nlmixr(m_nlmixr, d_nlmixr, est = est, control = control)
})
if (is.null(f_nlmixr$CMT)) {
nlmixr_df <- as.data.frame(f_nlmixr[c("ID", "TIME", "DV", "IPRED", "IRES", "IWRES")])
nlmixr_df$CMT <- as.character(object[[1]]$data$variable[1])
} else {
nlmixr_df <- as.data.frame(f_nlmixr[c("ID", "TIME", "DV", "CMT", "IPRED", "IRES", "IWRES")])
}
return_data <- nlmixr_df %>%
dplyr::transmute(ds = ID, name = CMT, time = TIME, value = DV,
predicted = IPRED, residual = IRES,
std = IRES/IWRES, standardized = IWRES) %>%
dplyr::arrange(ds, name, time)
bparms_optim <- backtransform_odeparms(f_nlmixr$theta,
object[[1]]$mkinmod,
object[[1]]$transform_rates,
object[[1]]$transform_fractions)
result <- list(
mkinmod = object[[1]]$mkinmod,
mmkin = object,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions,
nm = f_nlmixr,
est = est,
time = fit_time,
mean_dp_start = mean_dp_start,
mean_ep_start = mean_ep_start,
bparms.optim = bparms_optim,
bparms.fixed = object[[1]]$bparms.fixed,
data = return_data,
err_mod = error_model,
date.fit = date(),
nlmixrversion = as.character(utils::packageVersion("nlmixr")),
mkinversion = as.character(utils::packageVersion("mkin")),
Rversion = paste(R.version$major, R.version$minor, sep=".")
)
class(result) <- c("nlmixr.mmkin", "mixed.mmkin")
return(result)
}
#' @export
#' @rdname nlmixr.mmkin
#' @param x An nlmixr.mmkin object to print
#' @param digits Number of digits to use for printing
print.nlmixr.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat("Kinetic nonlinear mixed-effects model fit by", x$est, "using nlmixr")
cat("\nStructural model:\n")
diffs <- x$mmkin[[1]]$mkinmod$diffs
nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs)
writeLines(strwrap(nice_diffs, exdent = 11))
cat("\nData:\n")
cat(nrow(x$data), "observations of",
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
cat("\nLikelihood:\n")
print(data.frame(
AIC = AIC(x$nm),
BIC = BIC(x$nm),
logLik = logLik(x$nm),
row.names = " "), digits = digits)
cat("\nFitted parameters:\n")
print(x$nm$parFixed, digits = digits)
invisible(x)
}
#' @rdname nlmixr.mmkin
#' @param add_attributes Should the starting values used for degradation model
#' parameters and their distribution and for the error model parameters
#' be returned as attributes?
#' @return An function defining a model suitable for fitting with [nlmixr::nlmixr].
#' @export
nlmixr_model <- function(object,
est = c("saem", "focei"),
degparms_start = "auto",
eta_start = "auto",
test_log_parms = TRUE, conf.level = 0.6,
error_model = object[[1]]$err_mod, add_attributes = FALSE)
{
if (nrow(object) > 1) stop("Only row objects allowed")
est = match.arg(est)
mkin_model <- object[[1]]$mkinmod
obs_vars <- names(mkin_model$spec)
if (error_model == object[[1]]$err_mod) {
if (length(object[[1]]$mkinmod$spec) > 1 & est == "saem") {
if (error_model == "const") {
message(
"Constant variance for more than one variable is not supported for est = 'saem'\n",
"Changing the error model to 'obs' (variance by observed variable)")
error_model <- "obs"
}
if (error_model =="tc") {
message(
"With est = 'saem', a different error model is required for each observed variable",
"Changing the error model to 'obs_tc' (Two-component error for each observed variable)")
error_model <- "obs_tc"
}
}
}
degparms_mmkin <- mean_degparms(object,
test_log_parms = test_log_parms,
conf.level = conf.level, random = TRUE)
degparms_optim <- degparms_mmkin$fixed
degparms_optim_ilr_names <- grep("^f_.*_ilr", names(degparms_optim), value = TRUE)
obs_vars_ilr <- unique(gsub("f_(.*)_ilr.*$", "\\1", degparms_optim_ilr_names))
degparms_optim_noilr <- degparms_optim[setdiff(names(degparms_optim),
degparms_optim_ilr_names)]
degparms_optim_back <- backtransform_odeparms(degparms_optim,
object[[1]]$mkinmod,
object[[1]]$transform_rates,
object[[1]]$transform_fractions)
if (degparms_start[1] == "auto") {
degparms_start <- degparms_optim_noilr
for (obs_var_ilr in obs_vars_ilr) {
ff_names <- grep(paste0("^f_", obs_var_ilr, "_"),
names(degparms_optim_back), value = TRUE)
f_tffm0 <- tffm0(degparms_optim_back[ff_names])
f_tffm0_qlogis <- qlogis(f_tffm0)
names(f_tffm0_qlogis) <- paste0("f_", obs_var_ilr,
"_tffm0_", 1:length(f_tffm0), "_qlogis")
degparms_start <- c(degparms_start, f_tffm0_qlogis)
}
}
if (eta_start[1] == "auto") {
eta_start <- degparms_mmkin$eta[setdiff(names(degparms_optim),
degparms_optim_ilr_names)]
for (obs_var_ilr in obs_vars_ilr) {
ff_n <- length(grep(paste0("^f_", obs_var_ilr, "_"),
names(degparms_optim_back), value = TRUE))
eta_start_ff <- rep(0.3, ff_n)
names(eta_start_ff) <- paste0("f_", obs_var_ilr,
"_tffm0_", 1:ff_n, "_qlogis")
eta_start <- c(eta_start, eta_start_ff)
}
}
degparms_fixed <- object[[1]]$bparms.fixed
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)
odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names)
odeparms_fixed <- degparms_fixed[odeparms_fixed_names]
odeini_fixed <- degparms_fixed[odeini_fixed_parm_names]
names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
# Definition of the model function
f <- function(){}
ini_block <- "ini({"
# Initial values for all degradation parameters
for (parm_name in names(degparms_start)) {
# As initials for state variables are not transformed,
# we need to modify the name here as we want to
# use the original name in the model block
ini_block <- paste0(
ini_block,
parm_name, " = ",
as.character(degparms_start[parm_name]),
"\n",
"eta.", parm_name, " ~ ",
as.character(eta_start[parm_name]),
"\n"
)
}
# Error model parameters
error_model_mkin <- object[[1]]$err_mod
errparm_names_mkin <- names(object[[1]]$errparms)
errparms_mkin <- sapply(errparm_names_mkin, function(parm_name) {
mean(sapply(object, function(x) x$errparms[parm_name]))
})
sigma_tc_mkin <- errparms_ini <- errparms_mkin[1] +
mean(unlist(sapply(object, function(x) x$data$observed)), na.rm = TRUE) *
errparms_mkin[2]
if (error_model == "const") {
if (error_model_mkin == "tc") {
errparms_ini <- sigma_tc_mkin
} else {
errparms_ini <- mean(errparms_mkin)
}
names(errparms_ini) <- "sigma"
}
if (error_model == "obs") {
errparms_ini <- switch(error_model_mkin,
const = rep(errparms_mkin["sigma"], length(obs_vars)),
obs = errparms_mkin,
tc = sigma_tc_mkin)
names(errparms_ini) <- paste0("sigma_", obs_vars)
}
if (error_model == "tc") {
if (error_model_mkin != "tc") {
stop("Not supported")
} else {
errparms_ini <- errparms_mkin
}
}
if (error_model == "obs_tc") {
if (error_model_mkin != "tc") {
stop("Not supported")
} else {
errparms_ini <- rep(errparms_mkin, length(obs_vars))
names(errparms_ini) <- paste0(
rep(names(errparms_mkin), length(obs_vars)),
"_",
rep(obs_vars, each = 2))
}
}
for (parm_name in names(errparms_ini)) {
ini_block <- paste0(
ini_block,
parm_name, " = ",
as.character(errparms_ini[parm_name]),
"\n"
)
}
ini_block <- paste0(ini_block, "})")
body(f)[2] <- parse(text = ini_block)
model_block <- "model({"
# Population initial values for the ODE state variables
for (parm_name in odeini_optim_parm_names) {
model_block <- paste0(
model_block,
parm_name, "_model = ",
parm_name, " + eta.", parm_name, "\n",
gsub("(.*)_0", "\\1(0)", parm_name), " = ", parm_name, "_model\n")
}
# Population initial values for log rate constants
for (parm_name in grep("^log_", names(degparms_start), value = TRUE)) {
model_block <- paste0(
model_block,
gsub("^log_", "", parm_name), " = ",
"exp(", parm_name, " + eta.", parm_name, ")\n")
}
# Population initial values for logit transformed parameters
for (parm_name in grep("_qlogis$", names(degparms_start), value = TRUE)) {
model_block <- paste0(
model_block,
gsub("_qlogis$", "", parm_name), " = ",
"expit(", parm_name, " + eta.", parm_name, ")\n")
}
# Calculate formation fractions from tffm0 transformed values
for (obs_var_ilr in obs_vars_ilr) {
ff_names <- grep(paste0("^f_", obs_var_ilr, "_"),
names(degparms_optim_back), value = TRUE)
pattern <- paste0("^f_", obs_var_ilr, "_to_(.*)$")
target_vars <- gsub(pattern, "\\1",
grep(paste0("^f_", obs_var_ilr, "_to_"), names(degparms_optim_back), value = TRUE))
for (i in 1:length(target_vars)) {
ff_name <- ff_names[i]
ff_line <- paste0(ff_name, " = f_", obs_var_ilr, "_tffm0_", i)
if (i > 1) {
for (j in (i - 1):1) {
ff_line <- paste0(ff_line, " * (1 - f_", obs_var_ilr, "_tffm0_", j , ")")
}
}
model_block <- paste0(
model_block,
ff_line,
"\n"
)
}
}
# Differential equations
model_block <- paste0(
model_block,
paste(
gsub("d_(.*) =", "d/dt(\\1) =", mkin_model$diffs),
collapse = "\n"),
"\n"
)
# Error model
if (error_model == "const") {
model_block <- paste0(model_block,
paste(paste0(obs_vars, " ~ add(sigma)"), collapse = "\n"))
}
if (error_model == "obs") {
model_block <- paste0(model_block,
paste(paste0(obs_vars, " ~ add(sigma_", obs_vars, ")"), collapse = "\n"),
"\n")
}
if (error_model == "tc") {
model_block <- paste0(model_block,
paste(paste0(obs_vars, " ~ add(sigma_low) + prop(rsd_high)"), collapse = "\n"),
"\n")
}
if (error_model == "obs_tc") {
model_block <- paste0(model_block,
paste(
paste0(obs_vars, " ~ add(sigma_low_", obs_vars, ") + ",
"prop(rsd_high_", obs_vars, ")"), collapse = "\n"),
"\n")
}
model_block <- paste0(model_block, "})")
body(f)[3] <- parse(text = model_block)
if (add_attributes) {
attr(f, "mean_dp_start") <- degparms_optim
attr(f, "eta_start") <- degparms_mmkin$eta
attr(f, "mean_ep_start") <- errparms_ini
}
return(f)
}
#' @rdname nlmixr.mmkin
#' @return An dataframe suitable for use with [nlmixr::nlmixr]
#' @export
nlmixr_data <- function(object, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
d <- lapply(object, function(x) x$data)
compartment_map <- 1:length(object[[1]]$mkinmod$spec)
names(compartment_map) <- names(object[[1]]$mkinmod$spec)
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_nlmixr <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
ds_nlmixr$variable <- as.character(ds_nlmixr$variable)
ds_nlmixr_renamed <- data.frame(
ID = ds_nlmixr$ds,
TIME = ds_nlmixr$time,
AMT = 0, EVID = 0,
CMT = ds_nlmixr$variable,
DV = ds_nlmixr$observed,
stringsAsFactors = FALSE)
return(ds_nlmixr_renamed)
}
|